数据处理方法及装置的制造方法

xiaoxiao2021-2-27  197

数据处理方法及装置的制造方法
【技术领域】
[0001] 本发明设及计算机领域,具体地,设及一种数据处理方法及装置。
【背景技术】
[0002] 为了获悉身体健康状况,人们定期会到相关检测机构(例如,体检机构、医疗机构) 进行健康检查。然而,用户所去的检测机构可能不同,每次检测同种生理指标所使用的检测 设备可能不同,不同的检测设备针对同种生理指标所给出的基准数值也可能不同。因此,如 果直接使用运些通过不同的检测设备检测出的同种生理指标的数值来对该指标进行趋势 分析,一来不合理,二来可能会导致结果不准确。

【发明内容】

[0003] 本发明的目的是提供一种数据处理方法及装置,W消除不同检测设备之间的检测 偏差,使得检测数据分析模型更为合理、准确。
[0004] 为了实现上述目的,根据本发明的第一方面,提供了一种数据处理方法,该方法应 用于用户设备,并且该方法包括:获取由不同检测设备检测出的针对同一被测对象的同种 指标的检测数据,W及每种检测设备针对所述指标的基准数值,其中,每种检测设备的基准 数值用于形成该检测设备针对所述指标的多个互不相交的基准数值区间;针对每个检测数 据,根据检测出该检测数据的检测设备针对所述指标的基准数值,确定该检测数据所处的 基准数值区间;针对每个检测数据,根据与该检测数据所处的基准数值区间相对应的目标 数值区间的预设临界值,对该检测数据进行归一化处理,得到该检测数据的归一化值;根据 每个检测数据的归一化值,构建或更新所述指标的检测数据分析模型。
[0005] 在第一方面的可选的实施方式中,所述检测数据分析模型为每个检测数据的归一 化值随每个检测数据对应的检测时间从早期到近期的变化曲线。
[0006] 在第一方面的可选的实施方式中,该方法还包括:存储每个检测数据的归一化值 中的至少一者;和/或,发送每个检测数据的归一化值。
[0007] 在第一方面的可选的实施方式中,该方法还包括:显示所述检测数据分析模型。 [000引在第一方面的可选的实施方式中,所述基准数值包括第一基准数值;W及,所述针 对每个检测数据,根据与该检测数据所处的基准数值区间相对应的目标数值区间的预设临 界值,对该检测数据进行归一化处理,得到该检测数据的归一化值,包括:针对每个检测数 据,在该检测数据小于检测出该检测数据的检测设备的第一基准数值的情况下,根据该检 测数据与检测出该检测数据的检测设备的第一基准数值之间的比例、与该检测数据所处的 基准数值区间相对应的目标数值区间的预设临界值、W及第一归一化函数,对该检测数据 进行归一化处理,得到该检测数据的归一化值。
[0009] 在第一方面的可选的实施方式中,所述第一归一化函数包括:
[0010]
[0011] 其中,value表示检测数据;min表示检测出该检测数据value的检测设备的第一基 准数值;λ表示与检测数据value所处的基准数值区间相对应的目标数值区间的预设临界值 中的最小临界值;y表示检测数据value的归一化值。
[0012] 在第一方面的可选的实施方式中,所述基准数值还包括第二基准数值,其中,所述 第二基准数值大于所述第一基准数值;W及,所述针对每个检测数据,根据与该检测数据所 处的基准数值区间相对应的目标数值区间的预设临界值,对该检测数据进行归一化处理, 得到该检测数据的归一化值,还包括:针对每个检测数据,在该检测数据大于或等于检测出 该检测数据的检测设备的第一基准数值、并且小于或等于检测出该检测数据的检测设备的 第二基准数值的情况下,根据该检测数据与检测出该检测数据的检测设备的第一基准数值 之间的差值W及检测出该检测数据的检测设备的第二基准数值与第一基准数值之间的差 值运两个差值之间的比例、与该检测数据所处的基准数值区间相对应的目标数值区间的预 设临界值、W及第二归一化函数,对该检测数据进行归一化处理,得到该检测数据的归一化 值。
[0013] 在第一方面的可选的实施方式中,所述第二归一化函数包括:
[0014]
[0015] 其中,value表示检测数据;min表示检测出该检测数据value的检测设备的第一基 准数值;max表示检测出该检测数据value的检测设备的第二基准数值;λ表示与检测数据 value所处的基准数值区间相对应的目标数值区间的预设临界值中的最小临界值;y表示检 测数据value的归一化值。
[0016] 在第一方面的可选的实施方式中,所述针对每个检测数据,根据与该检测数据所 处的基准数值区间相对应的目标数值区间的预设临界值,对该检测数据进行归一化处理, 得到该检测数据的归一化值,还包括:针对每个检测数据,在该检测数据大于检测出该检测 数据的检测设备的第二基准数值的情况下,根据该检测数据与检测出该检测数据的检测设 备的第一基准数值之间的差值W及检测出该检测数据的检测设备的第二基准数值与第一 基准数值之间的差值运两个差值之间的比例、与该检测数据所处的基准数值区间相对应的 目标数值区间的预设临界值、最大归一化值、W及第Ξ归一化函数,对该检测数据进行归一 化处理,得到该检测数据的归一化值,其中,所述最大归一化值为检测时间早于该检测数据 的检测时间的检测数据的归一化值中的最大者。
[0017] 在第一方面的可选的实施方式中,所述第Ξ归一化函数包括:
[001 引
[0019] 其中,value表示检测数据;min表示检测出该检测数据value的检测设备的第一基 准数值;max表示检测出该检测数据value的检测设备的第二基准数值;MAX表示所述最大归 一化值;λ表示与检测数据value所处的基准数值区间相对应的目标数值区间的预设临界值 中的最小临界值;y表示检测数据value的归一化值。
[0020] 根据本发明的第二方面,提供了一种数据处理装置,该装置配置于用户设备,并且 该装置包括:数据获取模块,用于获取由不同检测设备检测出的针对同一被测对象的同种 指标的检测数据,w及每种检测设备针对所述指标的基准数值,其中,每种检测设备的基准 数值用于形成该检测设备针对所述指标的多个互不相交的基准数值区间;基准数值区间确 定模块,用于针对每个检测数据,根据检测出该检测数据的检测设备针对所述指标的基准 数值,确定该检测数据所处的基准数值区间;处理模块,用于针对每个检测数据,根据与该 检测数据所处的基准数值区间相对应的目标数值区间的预设临界值,对该检测数据进行归 一化处理,得到该检测数据的归一化值;执行模块,用于根据每个检测数据的归一化值,构 建或更新所述指标的检测数据分析模型。
[0021] 在第二方面的可选的实施方式中,所述检测数据分析模型为每个检测数据的归一 化值随每个检测数据对应的检测时间从早期到近期的变化曲线。
[0022] 在第二方面的可选的实施方式中,该装置还包括:存储模块,用于存储每个检测数 据的归一化值中的至少一者;和/或,发送模块,用于发送每个检测数据的归一化值。
[0023] 在第二方面的可选的实施方式中,该装置还包括:显示模块,用于显示所述检测数 据分析模型。
[0024] 在第二方面的可选的实施方式中,所述基准数值包括第一基准数值;W及,所述处 理模块包括:第一处理子模块,用于针对每个检测数据,在该检测数据小于检测出该检测数 据的检测设备的第一基准数值的情况下,根据该检测数据与检测出该检测数据的检测设备 的第一基准数值之间的比例、与该检测数据所处的基准数值区间相对应的目标数值区间的 预设临界值、W及第一归一化函数,对该检测数据进行归一化处理,得到该检测数据的归一 化值。
[0025] 在第二方面的可选的实施方式中,所述第一归一化函数包括:
[0026]
[0027] 其中,value表示检测数据;min表示检测出该检测数据value的检测设备的第一基 准数值;λ表示与检测数据value所处的基准数值区间相对应的目标数值区间的预设临界值 中的最小临界值;y表示检测数据value的归一化值。
[0028] 在第二方面的可选的实施方式中,所述基准数值还包括第二基准数值,其中,所述 第二基准数值大于所述第一基准数值;W及,所述处理模块还包括:第二处理子模块,用于 针对每个检测数据,在该检测数据大于或等于检测出该检测数据的检测设备的第一基准数 值、并且小于或等于检测出该检测数据的检测设备的第二基准数值的情况下,根据该检测 数据与检测出该检测数据的检测设备的第一基准数值之间的差值W及检测出该检测数据 的检测设备的第二基准数值与第一基准数值之间的差值运两个差值之间的比例、与该检测 数据所处的基准数值区间相对应的目标数值区间的预设临界值、W及第二归一化函数,对 该检测数据进行归一化处理,得到该检测数据的归一化值。
[0029] 在第二方面的可选的实施方式中,所述第二归一化函数包括:
[0030]
[0031] 其中,value表示检测数据;min表示检测出该检测数据value的检测设备的第一基 准数值;max表示检测出该检测数据value的检测设备的第二基准数值;λ表示与检测数据 value所处的基准数值区间相对应的目标数值区间的预设临界值中的最小临界值;y表示检 测数据value的归一化值。
[0032] 在第二方面的可选的实施方式中,所述处理模块还包括:第Ξ处理子模块,用于针 对每个检测数据,在该检测数据大于检测出该检测数据的检测设备的第二基准数值的情况 下,根据该检测数据与检测出该检测数据的检测设备的第一基准数值之间的差值W及检测 出该检测数据的检测设备的第二基准数值与第一基准 数值之间的差值运两个差值之间的 比例、与该检测数据所处的基准数值区间相对应的目标数值区间的预设临界值、最大归一 化值、W及第Ξ归一化函数,对该检测数据进行归一化处理,得到该检测数据的归一化值, 其中,所述最大归一化值为检测时间早于该检测数据的检测时间的检测数据的归一化值中 的最大者。
[0033] 在第二方面的可选的实施方式中,所述第Ξ归一化函数包括:
[0034]
[0035] 其中,value表示检测数据;min表示检测出该检测数据value的检测设备的第一基 准数值;max表示检测出该检测数据value的检测设备的第二基准数值;MAX表示所述最大归 一化值;λ表示与检测数据value所处的基准数值区间相对应的目标数值区间的预设临界值 中的最小临界值;y表示检测数据value的归一化值。
[0036] 在上述技术方案中,通过对不同检测设备检测出的针对同一被测对象的同种指标 的检测数据进行归一化,使得能够利用预设的统一的目标数值区间来衡量运些检测数据, 由此可W消除不同检测设备之间的检测偏差。并且,利用各检测数据的归一化值来建立或 者更新针对该指标的检测数据分析模型,可W使得检测数据分析模型能够更为准确、客观、 合理,从而能够为该指标分析提供准确的依据。
[0037] 本发明的其他特征和优点将在随后的【具体实施方式】部分予W详细说明。
【附图说明】
[0038] 附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具 体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
[0039] 图1示出了根据一示例性实施方式示出的一种实施环境的示意图;
[0040] 图2示出了根据本发明的示例性实施方式的数据处理方法的流程图;
[0041 ]图3示出了一示例性检测数据分析模型的示意图;
[0042] 图4A至图4B示出了根据本发明的另一示例性实施方式的数据处理方法的流程图;
[0043] 图5示出了根据本发明的另一示例性实施方式的数据处理方法的流程图;
[0044] 图6示出了在实施图5所示的方法时,用户设备的界面示意图;
[0045] 图7示出了根据本发明的示例性实施方式的数据处理装置的框图;
[0046] 图8A至图8B示出了根据本发明的另一示例性实施方式的数据处理装置的框图;
[0047] 图9示出了根据本发明的另一示例性实施方式的数据处理装置的框图;
[004引图10A至图10C示出了根据本发明的另一示例性实施方式的数据处理装置的框图。
【具体实施方式】
[0049] W下结合附图对本发明的【具体实施方式】进行详细说明。应当理解的是,此处所描 述的【具体实施方式】仅用于说明和解释本发明,并不用于限制本发明。
[0050] 图1示出了根据一示例性实施方式示出的一种实施环境的示意图。如图1所示,该 实施环境可W包括:多种不同的检测设备(例如,检测设备100、检测设备110),其中,每种检 测设备均用于检测同一被测对象的同种指标。在本发明中,待检测的指标可W为任意类型 的指标。在一个实施方式中,该指标可W包括生理参数指标,例如,尿酸、血红蛋白、白细胞、 血糖,等等。相应地,对应的检测设备可W为血常规检测仪、血糖仪,等等。不过应当理解的 是,上述示例不用于限制本发明,其他类型的检测设备(如环境检测仪器、水文气象监测仪 器、电子测试仪器等)检测出的其他指标的检测数据同样适用于本发明。
[0051] 此外,如图1所示,该实施环境还可W包括服务器120,该服务器120可W是用于与 各个检测设备进行通信、并存储各个检测设备发送的检测数据的电子设备。此外,服务器 120可W通过各种有线或无线技术与各个检测设备通信,例如,服务器120可W通过WiFi (Wireless Fidelity,无线保真)、26、36、46网络等与各个检测设备通信。
[0052] 此外,如图1所示,该实施环境还可W包括用户设备130,其中,该用户设备130可W 是智能手机、平板电脑、PC机、笔记本电脑等等。此外,用户设备130可W通过各种有线或无 线技术与服务器120通信,例如,用户设备130可W通过机。1、26、36、46网络等与服务器120 通信。该用户设备130能够从服务器120获取各个检测设备检测出的针对同一被测对象的同 种指标的检测数据。图1中W用户设备130是智能手机为例来示意。
[0053] 图2示出了根据本发明的示例性实施方式的数据处理方法的流程图,其中,该方法 可W应用于用户设备中,例如,图1中所示的用户设备130。如图2所示,该方法可W包括W下 步骤。
[0054] 在步骤S201中,获取由不同检测设备检测出的针对同一被测对象的同种指标的检 测数据,W及每种检测设备针对该指标的基准数值,其中,每种检测设备的基准数值可W用 于形成该检测设备针对该指标的多个互不相交的基准数值区间。
[0055] 在本发明中,每个检测数据针对的是同一被测对象的同种指标。运样,通过本发明 提供的方法,可W构建出针对同一被测对象(例如,同一人)的某种指标的检测数据分析模 型,从而便于对该被测对象的运项指标进行分析。
[0056] 每种检测设备具有自身对该指标的基准数值。不同检测设备的基准数值可W相 同,或者不同。例如,假设针对尿酸运一生理指标,用户前一次在检测机构A,通过检测设备 100检测出的尿酸值为309ymol/L,并且该检测设备100针对尿酸的基准数值为150ymol/L和 430ymol/L。然而,用户本次在检测机构B,通过检测设备110检测出的尿酸值为30祉mol/L, 并且该检测设备110针对尿酸的基准数值为140ymol/L和420ymol/L。
[0057] 各个检测设备的基准数值可W形成该检测设备针对检测的指标的多个互不相交 的基准数值区间。例如,如上面所示的检测设备100,其基准数值可W形成多个互不相交的 基准数值区间,分别为[0,150)、[150,430]^及(430,+^)。其中,当通过检测设备1〇〇检测 出的尿酸值处于[0,150)的基准数值区间中时,表明用户当前的尿酸偏低。当通过检测设备 100检测出的尿酸值处于[150,430]的基准数值区间中时,表明用户当前的尿酸处于正常范 围。当通过检测设备100检测出的尿酸值处于(430,+w)的基准数值区间中时,表明用户当 前的尿酸偏高。
[005引再例如,上面所示的检测设备110,其基准数值可W形成多个互不相交的基准数值 区间,分别为[0,140)、[140,420]^及(420,+^)。其中,当通过检测设备11〇检测出的尿酸 值处于[0,140)的基准数值区间中时,表明用户当前的尿酸偏低。当通过检测设备110检测 出的尿酸值处于[140,420]的基准数值区间中时,表明用户当前的尿酸处于正常范围。当通 过检测设备110检测出的尿酸值处于(420,+w)的基准数值区间中时,表明用户当前的尿酸 偏局。
[0059] 从上面的示例可W看出,由于检测设备的不同,其得到的指标的检测数据可能不 同,并且运两个检测设备用于衡量检测数据是否正常所依据的基准数值也不同,因此,不能 将两个检测值直接用来评价用户的运一指标的变化趋势。
[0060] 在步骤S202中,针对每个检测数据,根据检测出该检测数据的检测设备针对所述 指标的基准数值,确定该检测数据所处的基准数值区间。
[0061] 例如,假设获取到的针对尿酸运一指标的两个检测数据分别为309ymol/L和30祉 111〇1凡,其中,3094111〇1凡的检测数据来自于检测设备100,30祉1]1〇1/]^的检测数据来自于检测 设备110。运样,通过步骤S202,可W确定出30化mol/L的检测数据所处的基准数值区间为 [150,430],W及30祉mol/L的检测数据所处的基准数值区间为[140,420]。
[0062] 在步骤S203中,针对每个检测数据,根据与该检测数据所处的基准数值区间相对 应的目标数值区间的预设临界值,对该检测数据进行归一化处理,得到该检测数据的归一 化值。
[0063] 在本发明中,尽管采用不同的检测设备,但是由于运些检测设备检测的是同一指 标,因此,运些检测设备的基准数值的个数是相同的,也就是说,每个检测设备形成的基准 数值区间的个数是相同的。例如,针对上面所述的检测设备100和检测设备110,其各自都形 成了Ξ个基准数值区间,分别对应偏低区间、正常区间W及偏高区间。不同的是,针对运两 个检测设备,由于划分出运Ξ个区间的基准数值不同,因此,所得到的偏低区间的范围不 同、正常区间的范围不同、W及偏高区间的范围不同。
[0064] 可W预先针对每种基准数值区间,设定对应的目标数值区间。例如,假设针对尿酸 运一指标,可W预先设定与偏低区间对应的目标数值区间为[0,1),与正常区间对应的目标 数值区间为[1,2],与偏高区间对应的目标数值区间为(2,3]。应当理解的是,对于某个指 标,所设定的各个目标数值区间的范围是统一的,不会因检测设备不同而有所差异。
[0065] 此外,所设定的每个目标数值区间都具有预设的临界值。其中,目标数值区间的临 界值是指用于划分该目标数值区间与另一目标数值区间的数值。在本发明中,每个目标数 值区间可W具有两个临界值。例如,针对与偏低区间对应的目标数值区间而言,其临界值可 W为0和1;针对与正常区间对应的目标数值区间而言,其临界值可W为1和2;针对与偏高区 间对应的目标数值区间而言,其临界值可W为2 和3。在一个示例实施方式中,可W将目标数 值区间的最小临界值用于对检测数据的归一化处理。不过在其他可选的实施方式中,也可 W将目标数值区间的最大临界值、或者最小临界值和最大临界值两者用于对检测数据的归 一化处理。
[0066] 运样,通过步骤S203,可W将各个检测数据归一化到预设的目标数据区间中,运 样,得到的检测数据的归一化值具有统一的衡量标准。并且,原本属于偏低区间的检测数据 经过归一化后,仍能够映射到与偏低区间对应的目标数据区间中,原本属于正常区间的检 测数据经过归一化后,仍能够映射到与正常区间对应的目标数据区间中,原本属于偏高区 间的检测数据经过归一化后,仍能够映射到与偏高区间对应的目标数据区间中。因此,通过 归一化处理,不会改变检测数据原本的属性,也就是说,通过判断归一化值落到哪个目标数 据区间,仍能够得出该检测数据是偏低、正常还是偏高。
[0067] 在步骤S204中,根据每个检测数据的归一化值,构建或更新指标的检测数据分析 模型。
[0068] 如果检测数据分析模型尚未建立,则可W根据得到的每个检测数据的归一化值, 来构建该检测数据分析模型。而如果已经根据之前的历史检测数据的归一化值建立了该检 测数据分析模型,那么可W根据本次得到的每个检测数据的归一化值,来更新该检测数据 分析模型。
[0069] 在本发明的一个示例实施方式中,该检测数据分析模型可W为每个检测数据的归 一化值随每个检测数据对应的检测时间从早期到近期的变化曲线。在本发明中,检测数据 对应的检测时间与当前时间之间的时间间隔越小,表明该检测数据对应的检测时间距当前 越近。反之,该时间间隔越大,表明该检测数据对应的检测时间距当前越早。
[0070] 例如,图3示出了一示例性检测数据分析模型的示意图。在该图3所示的曲线中,横 坐标表示各个检测数据对应的检测时间,纵坐标表示各个检测数据的归一化值。该曲线能 够直观地体现出指标的检测数据的变化趋势。
[0071] 在上述技术方案中,通过对不同检测设备检测出的针对同一被测对象的同种指标 的检测数据进行归一化,使得能够利用预设的统一的目标数值区间来衡量运些检测数据, 由此可W消除不同检测设备之间的检测偏差。并且,利用各检测数据的归一化值来建立或 者更新针对该指标的检测数据分析模型,可W使得检测数据分析模型能够更为准确、客观、 合理,从而能够为该指标分析提供准确的依据。
[0072] 下面通过举例的方式来描述在本发明中,如何对检测数据进行归一化处理的具体 过程。不过应当理解的是,W下示例过程仅仅用于说明本发明,而不用于限制本发明。
[0073] 首先,在一个实施方式中,检测设备对指标的基准数值可W包括第一基准数值。例 如,上述检测设备100的基准数值150ymol/L可W为该检测设备100的第一基准数值,上述检 测设备110的基准数值140ymol/L可W为该检测设备110的第一基准数值。
[0074] 针对每个检测数据,在该检测数据小于检测出该检测数据的检测设备的第一基准 数值的情况下,根据该检测数据与检测出该检测数据的检测设备的第一基准数值之间的比 例、与该检测数据所处的基准数值区间相对应的目标数值区间的预设临界值(在一个示例 实施方式中,使用目标数值区间的最小临界值)、W及第一归一化函数,对该检测数据进行 归一化处理,得到该检测数据的归一化值。
[0075] 在一个实施方式中,所述第一归一化函数可W包括:
[0076]
V 1
[0077] 其中,value表示检测数据;min表示检测出该检测数据value的检测设备的第一基 准数值;λ表示与检测数据value所处的基准数值区间相对应的目标数值区间的预设临界值 中的最小临界值;y表示检测数据value的归一化值。
[007引例如,假设针对检测设备100,其检测出的尿酸值为109ymol/L,那么,其与该检测 109 设备100的第一基准数值之间的比例为并且,该尿酸值所处的基准数值区间属于偏低 区间,其对应的目标数值区间为[0,1 ),该目标数值区间的预设临界值中的最小临界值为0, 良P,此时,λ = 0。运样,通过等式(1),109μπιο 1 /L的尿酸值被归一化,得到归一化值为0.73。
[0079] 再例如,假设在一段时间之后,针对检测设备110,其检测出的尿酸值为105皿〇1/ L,那么,其与该检测设备110的第一基准数值之间的比例为并且,该尿酸值所处的基 140 准数值区间属于偏低区间,其对应的目标数值区间为[0,1),该目标数值区间的预设临界值 中的最小临界值为0,即,此时,λ=0。运样,通过等式(l),105ymol/L的尿酸值被归一化,得 到归一化值为0.75。
[0080] 由此可W看出,在数值上,109ymol/L的尿酸值大于105ymol/L的尿酸值,如果直接 用该数值进行趋势分析,则可W得出尿酸呈下降趋势的结果。然而,通过归一化处理后,109 ymol/L的尿酸值对应的归一化值为0.73,而105ymol/L的尿酸值对应的归一化值为0.75,利 用该归一化值进行趋势分析,则可W得出尿酸呈上升趋势的结果。显然,后者所得出的结果 更为合理、准确,因为相比于109ymol/L在检测设备100的基准数值区间[0,150)中所占的相 对比例,l05ymol/L在检测设备110的基准数值区间[0,140)中所占的相对比例更大,表明在 经过一段时间后,尿酸正在趋近正常水平。
[0081] 此外,在另一个实施方式中,检测设备对指标的基准数值还可W包括第二基准数 值,其中,该第二基准数值可W大于第一基准数值。例如,上述检测设备100的基准数值43化 mol/L可W为该检测设备100的第二基准数值,上述检测设备110的基准数值420ymol/L可W 为该检测设备110的第二基准数值。
[0082] 针对每个检测数据,在该检测数据大于或等于检测出该检测数据的检测设备的第 一基准数值、并且小于或等于检测出该检测数据的检测设备的第二基准数值的情况下,根 据该检测数据与检测出该检测数据的检测设备的第一基准数值之间的差值W及检测出该 检测数据的检测设备的第二基准数值与第一基准数值之间的差值运两个差值之间的比例、 与该检测数据所处的基准数值区间相对应的目标数值区间的预设临界值(在一个示例实施 方式中,使用目标数值区间的最小临界值)、W及第二归一化函数,对该检测数据进行归一 化处理,得到该检测数据的归一化值。
[0083] 在一个实施方式中,所述第二归一化函数可W包括:
[0084]
(2)
[0085] 其中,value表示检测数据;min表示检测出该检测数据value的检测设备的第一基 准数值;max表示检测出该检测数据value的检测设备的第二基准数值;λ表示与检测数据 value所处的基准数值区间相对应的目标数值区间的预设临界值中的最小临界值;y表示检 测数据value的归一化值。
[0086] 例如,假设针对检测设备100,其检测出的尿酸值为309ymol/L,那么,其与该检测 设备100的第一基准数值之间的差值为159ymol/L,并且该检测设备100的第二基准数值与 第一基准数值之间的差值为280皿ol/L。并且,该尿酸值所处的基准数值区间属于正常区 间,其对应的目标数值区间为[1,2],该目标数值区间的预设临界值中的最小临界值为1, 良P,此时,λ = 1。运样,通过等式(2),309μπιο 1 /L的尿酸值被归一化,得到归一化值为1.57。
[0087] 再例如,假设在一段时间之后,针对检测设备110,其检测出的尿酸值为30祉mol/ L,那么,其与该检测设备110的第一基准数值之间的差值为16祉mol/L,并且该检测设备110 的第二基准数值与第一基准数值之间的差值为280ymol/L。并且,该尿酸值所处的基准数值 区间属于正常区间,其对应的目标数值区间为[1,2],该目标数值区间的预设临界值中的最 小临界值为1,即,此时,λ=1。运样,通过等式(2),308皿〇1凡的尿酸值被归一化,得到归一 化值为1.6。
[008引由此可W看出,在数值上,309ymol/L的尿酸值大于308ymol/L的尿酸值,如果直接 用该数值进行趋势分析,则可W得出尿酸呈下降趋势的结果。然而,通过归一化处理后,309 ymol/L的尿酸值对应的归一化值为1.57,而308ymol/L的尿酸值对应的归一化值为1.6,利 用该归一化值进行趋势分析,则可W得出尿酸呈上升趋势的结果。显然,后者所得出的结果 更为合理、准确,因为相比于309ymol/L在检测设备100的基准数值区间[150,430]中所占的 相对比例,30祉mol/L在检测设备110的基准数值区间[140,420]中所占的相对比例更大,表 明在经过一段时间后,尿酸正在逐渐升高。
[0089] 在另一个实施方式中,针对每个检测数据,在该检测数据大于检测出该检测数据 的检测设备的第二基准数值的情况下,根据该检测数据与检测出该检测数据的检测设备的 第一基准数值之间的差值W及检测出该检测数据的检测设备的第二基准数值与第一基准 数值之间的差值运两个差值之间的比例、与该检测数据所处的基准数值区间相对应的目标 数值区间的预设临界值(在一个示例实施方式中,使用目标数值区间的最小临界值)、最大 归一化值、W及第Ξ归一化函数,对该检测数据进行归一化处理,得到该检测数据的归一化 值,其中,所述最大归一化值为检测时间早于该检测数据的检测时间的检测数据的归一化 值中的最大者。
[0090] 在一个实施方式中,所述第Ξ归一化函数可W包 括:
[00川
化)
[0092] 其中,value表示检测数据;min表示检测出该检测数据value的检测设备的第一基 准数值;max表示检测出该检测数据value的检测设备的第二基准数值;MAX表示所述最大归 一化值;λ表示与检测数据value所处的基准数值区间相对应的目标数值区间的预设临界值 中的最小临界值;y表示检测数据value的归一化值。
[0093] 例如,假设针对检测设备100,其检测出的尿酸值为439ymol/L,那么,其与该检测 设备100的第一基准数值之间的差值为289ymol/L,并且该检测设备100的第二基准数值与 第一基准数值之间的差值为280ymol/L。并且,早于该检测数据的检测时间的检测数据的归 一化值中的最大者例如为1.6。并且,该尿酸值所处的基准数值区间属于偏高区间,其对应 的目标数值区间为(2,3],该目标数值区间的预设临界值中的最小临界值为2,即,此时,λ= 2。运样,通过等式(3),4394111〇1/1的尿酸值被归一化,得到归一化值为2.65。
[0094] 再例如,假设在一段时间之后,假设针对检测设备110,其检测出的尿酸值为42化 mol/L,那么,其与该检测设备110的第一基准数值之间的差值为281ymol/L,并且该检测设 备110的第二基准数值与第一基准数值之间的差值为280ymol/L。并且,早于该检测数据的 检测时间的检测数据的归一化值中的最大者例如为2.65。并且,该尿酸值所处的基准数值 区间属于偏高区间,其对应的目标数值区间为(2,3],该目标数值区间的预设临界值中的最 小临界值为2,即,此时,λ = 2。运样,通过等式(3 ),421皿01 /L的尿酸值被归一化,得到归一 化值为2.38。
[00Μ]由此可W看出,通过归一化处理后,439皿ol/L的尿酸值对应的归一化值为2.65, 而42Uimol/L的尿酸值对应的归一化值为2.38,利用该归一化值进行趋势分析,则可W得出 尿酸呈下降趋势的结果。
[0096] 图4A至图4B示出了根据本发明的另一示例性实施方式的数据处理方法的流程图, 其中,该方法可W应用于用户设备中,例如,图1中所示的用户设备130。如图4A所示,该方法 还可W包括:在步骤S401中,存储每个检测数据的归一化值中的至少一者。
[0097] 在一个实施方式中,用户设备可W将得到的每个检测数据的归一化值存储到自身 的存储器中。或者,在另一个实施方式中,用户设备可W只将检测数据的归一化值中的最大 者存储到自身的存储器中,从而便于获取最大归一化值。
[0098] 可替换地,如图4B所示,该方法还可W包括:在步骤S402中,发送每个检测数据的 归一化值。
[0099] 例如,用户设备可W将得到的每个检测数据的归一化值发送至服务器,例如,图1 所示的服务器120, W由该服务器进行存储。或者,在另一实施方式中,用户设备也可W将得 到的每个检测数据的归一化值发送至其他外部存储装置。
[0100] 在一个优选的实施方式中,该方法可W包括步骤S401和S402两者,其中,用户设备 可W只将检测数据的归一化值中的最大者存储到自身的存储器中,并且可W将各个检测数 据的归一化值发送至服务器进行存储,运样,可W在保证方便获取最大归一化值的同时,节 省用户设备的存储空间。
[0101] 图5示出了根据本发明的另一示例性实施方式的数据处理方法的流程图,其中,该 方法可W应用于用户设备中,例如,图1中所示的用户设备130。如图5所示,该方法还可W包 括:在步骤S501中,显示检测数据分析模型。例如,如上所述,该检测数据分析模型可W为每 个检测数据的归一化值随每个检测数据对应的检测时间从早期到近期的变化曲线。那么, 在构建或更新该曲线后,可W通过用户设备的显示屏来显示该曲线,从而便于用户能够更 加直观地查看检测的指标的变化趋势,如图6所示。
[0102] 图7示出了根据本发明的示例性实施方式的数据处理装置的框图,其中,该数据处 理装置可W配置于用户设备中,例如,图1中所示的用户设备130。如图7所示,该数据处理装 置可W包括:数据获取模块701,用于获取由不同检测设备检测出的针对同一被测对象的同 种指标的检测数据,W及每种检测设备针对所述指标的基准数值,其中,每种检测设备的基 准数值用于形成该检测设备针对所述指标的多个互不相交的基准数值区间;基准数值区间 确定模块702,用于针对每个检测数据,根据检测出该检测数据的检测设备针对所述指标的 基准数值,确定该检测数据所处的基准数值区间;处理模块703,用于针对每个检测数据,根 据与该检测数据所处的基准数值区间相对应的目标数值区间的预设临界值,对该检测数据 进行归一化处理,得到该检测数据的归一化值;执行模块704,用于根据每个检测数据的归 一化值,构建或更新所述指标的检测数据分析模型。
[0103] 可选地,所述检测数据分析模型为每个检测数据的归一化值随每个检测数据对应 的检测时间从早期到近期的变化曲线。
[0104] 图8A至图8B示出了根据本发明的另一示例性实施方式的数据处理装置的框图,其 中,该数据处理装置可W配置于用户设备中,例如,图1中所示的用户设备130。如图8A所示, 该数据处理装置还可W包括:存储模块801,用于存储每个检测数据的归一化值中的至少一 者。
[0105] 可替换地,如图8B所示,该数据处理装置还可W包括:发送模块802,用于发送每个 检测数据的归一化值。
[0106] 在一个优选的实施方式中,该数据处理装置还可W包括存储模块801和发送模块 802两者。
[0107] 图9示出了根据本发明的另一示例性实施方式的数据处理装置的框图,其中,该数 据处理装置可W配置于用户设备中,例如,图1中所示的用户设备130。如图9所示,该数据处 理装置还可W包括:显示模块901,用于显示所述检测数据分析模型。
[0108] 图10A至图10C示出了根据本发明的另一示例性实施方式的数据处理装置的框图, 其中,该数据处理装置可W配置于用户设备中,例如,图1中所示的用户设备130。
[0109] 在一种实施方式中,所述基准数值可W包括第一基准数值。在运种情况下,如图 10A所示,所述处理模块703可W包括:第一处理子模块1001,用于针对每个检测数据,在该 检测数据小于检测出该检测数据的检测设备的第一基准数值的情况下,根据该检测数据与 检测出该检测数据的检测设备的第一基准数值之间的比例、与该检测数据所处的基准数值 区间相对应的目标数值区间的预设临界值、W及第一归一化函数,对该检测数据进行归一 化处理,得到该检测数据的归一化值。
[0110] 在另一实施方式中,所述基准数值还可W包括第二基准数值,其中,所述第二基准 数值大于所述第一基准数值。在运种情况下,如图10B所示,所述处理模块703还可W包括: 第二处理子模块1002,用于针对每个检测数据,在该检测数据大于或等于检测出该检测数 据的检测设备的第一基准数值、并且小于或等于检测出该检测数据的检测设备的第二基准 数值的情况下,根据该检测数据与检测出该检测数据的检测设备的第一基准数值之间的差 值W及检测出该检测数据的检测设备的第二基准数值与第一基准数值之间的差值运两个 差值之间的比例、与该检测数据所处的基准数值区间相对应的目标数值区间的预设临界 值、W及第二归一化函数,对该检测数据进行归一化处理,得到该检测数据的归一化值。
[0111] 此外,在又一实施方式中,如图10C所示,所述处理模块703还可W包括:第Ξ处理 子模块1003,用于针对每个检测数据,在该检测数据大于检测出该检测数据的检测设备的 第二基准数值的情况下,根据该检测数据与检测出该检测数据的检测设备的第一基准数值 之间的差值W及检测出该检测数据的检测设备的第二基准数值与第一基准数值之间的差 值运两个差值之间的比例、与该检测数据所处的基准数值区间相对应的目标数值区间的预 设临界值、最大归一化值、W及第Ξ归一化函数,对该检测数据进行归一化处理,得到该检 测数据的归一化值,其中,所述最大归一化值为检测时间早于该检测数据的检测时间的检 测数据的归一化值中的最大者。
[0112] 关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法 的实施例中进行了详细描述,此处将不做详细阐述说明。
[0113] W上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实 施方式中的具体细节,在本发明的技术构思范围内,可w对本发明的技术方案进行多种简 单变型,运些简单变型均属于本发明的保护范围。
[0114] 另外需要说明的是,在上述【具体实施方式】中所描述的各个具体技术特征,在不矛 盾的情况下,可W通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可 能的组合方式不再另行说明。
[0115] 此外,本发明的各种不同的实施方式之间也可W进行任意组合,只要其不违背本 发明的思想,其同样应当视为本发明所公开的内容。
【主权项】
1. 一种数据处理方法,其特征在于,该方法应用于用户设备,并且该方法包括: 获取由不同检测设备检测出的针对同一被测对象的同种指标的检测数据,以及每种检 测设备针对所述指标的基准数值,其中,每种检测设备的基准数值用于形成该检测设备针 对所述指标的多个互不相交的基准数值区间; 针对每个检测数据,根据检测出该检测数据的检测设备针对所述指标的基准数值,确 定该检测数据所处的基准数值区间; 针对每个检测数据,根据与该检测数据所处的基准数值区间相对应的目标数值区间的 预 设临界值,对该检测数据进行归一化处理,得到该检测数据的归一化值; 根据每个检测数据的归一化值,构建或更新所述指标的检测数据分析模型。2. 根据权利要求1所述的方法,其特征在于,所述检测数据分析模型为每个检测数据的 归一化值随每个检测数据对应的检测时间从早期到近期的变化曲线。3. 根据权利要求1所述的方法,其特征在于,该方法还包括: 存储每个检测数据的归一化值中的至少一者;和/或 发送每个检测数据的归一化值。4. 根据权利要求1所述的方法,其特征在于,该方法还包括: 显示所述检测数据分析模型。5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述基准数值包括第一基准数 值;以及 所述针对每个检测数据,根据与该检测数据所处的基准数值区间相对应的目标数值区 间的预设临界值,对该检测数据进行归一化处理,得到该检测数据的归一化值,包括: 针对每个检测数据,在该检测数据小于检测出该检测数据的检测设备的第一基准数值 的情况下,根据该检测数据与检测出该检测数据的检测设备的第一基准数值之间的比例、 与该检测数据所处的基准数值区间相对应的目标数值区间的预设临界值、以及第一归一化 函数,对该检测数据进行归一化处理,得到该检测数据的归一化值。6. 根据权利要求5所述的方法,其特征在于,所述第一归一化函数包括:其中,value表示检测数据;min表示检测出该检测数据value的检测设备的第一基准数 值;λ表示与检测数据value所处的基准数值区间相对应的目标数值区间的预设临界值中的 最小临界值;y表示检测数据value的归一化值。7. 根据权利要求5所述的方法,其特征在于,所述基准数值还包括第二基准数值,其中, 所述第二基准数值大于所述第一基准数值;以及 所述针对每个检测数据,根据与该检测数据所处的基准数值区间相对应的目标数值区 间的预设临界值,对该检测数据进行归一化处理,得到该检测数据的归一化值,还包括: 针对每个检测数据,在该检测数据大于或等于检测出该检测数据的检测设备的第一基 准数值、并且小于或等于检测出该检测数据的检测设备的第二基准数值的情况下,根据该 检测数据与检测出该检测数据的检测设备的第一基准数值之间的差值以及检测出该检测 数据的检测设备的第二基准数值与第一基准数值之间的差值这两个差值之间的比例、与该 检测数据所处的基准数值区间相对应的目标数值区间的预设临界值、以及第二归一化函 数,对该检测数据进行归一化处理,得到该检测数据的归一化值。8. 根据权利要求7所述的方法,其特征在于,所述第二归一化函数包括:其中,value表示检测数据;min表示检测出该检测数据value的检测设备的第一基准数 值;max表示检测出该检测数据value的检测设备的第二基准数值;λ表示与检测数据value 所处的基准数值区间相对应的目标数值区间的预设临界值中的最小临界值;y表示检测数 据va Iue的归一化值。9. 根据权利要求7所述的方法,其特征在于,所述针对每个检测数据,根据与该检测数 据所处的基准数值区间相对应的目标数值区间的预设临界值,对该检测数据进行归一化处 理,得到该检测数据的归一化值,还包括: 针对每个检测数据,在该检测数据大于检测出该检测数据的检测设备的第二基准数值 的情况下,根据该检测数据与检测出该检测数据的检测设备的第一基准数值之间的差值以 及检测出该检测数据的检测设备的第二基准数值与第一基准数值之间的差值这两个差值 之间的比例、与该检测数据所处的基准数值区间相对应的目标数值区间的预设临界值、最 大归一化值、以及第三归一化函数,对该检测数据进行归一化处理,得到该检测数据的归一 化值,其中,所述最大归一化值为检测时间早于该检测数据的检测时间的检测数据的归一 化值中的最大者。10. 根据权利要求9所述的方法,其特征在于,所述第三归一化函数包括:其中,value表示检测数据;min表示检测出该检测数据value的检测设备的第一基准数 值;max表示检测出该检测数据value的检测设备的第二基准数值;MX表示所述最大归一化 值;λ表示与检测数据value所处的基准数值区间相对应的目标数值区间的预设临界值中的 最小临界值;y表示检测数据value的归一化值。11. 一种数据处理装置,其特征在于,该装置配置于用户设备,并且该装置包括: 数据获取模块,用于获取由不同检测设备检测出的针对同一被测对象的同种指标的检 测数据,以及每种检测设备针对所述指标的基准数值,其中,每种检测设备的基准数值用于 形成该检测设备针对所述指标的多个互不相交的基准数值区间; 基准数值区间确定模块,用于针对每个检测数据,根据检测出该检测数据的检测设备 针对所述指标的基准数值,确定该检测数据所处的基准数值区间; 处理模块,用于针对每个检测数据,根据与该检测数据所处的基准数值区间相对应的 目标数值区间的预设临界值,对该检测数据进行归一化处理,得到该检测数据的归一化值; 执行模块,用于根据每个检测数据的归一化值,构建或更新所述指标的检测数据分析 模型。12. 根据权利要求11所述的装置,其特征在于,所述检测数据分析模型为每个检测数据 的归一化值随每个检测数据对应的检测时间从早期到近期的变化曲线。13. 根据权利要求11所述的装置,其特征在于,该装置还包括: 存储模块,用于存储每个检测数据的归一化值中的至少一者;和/或 发送模块,用于发送每个检测数据的归一化值。14. 根据权利要求11所述的装置,其特征在于,该装置还包括: 显示模块,用于显示所述检测数据分析模型。15. 根据权利要求11-14中任一项所述的装置,其特征在于,所述基准数值包括第一基 准数值;以及,所述处理模块包括: 第一处理子模块,用于针对每个检测数据,在该检测数据小于检测出该检测数据的检 测设备的第一基准数值的情况下,根据该检测数据与检测出该检测数据的检测设备的第一 基准数值之间的比例、与该检测数据所处的基准数值区间相对应的目标数值区间的预设临 界值、以及第一归一化函数,对该检测数据进行归一化处理,得到该检测数据的归一化值。16. 根据权利要求15所述的装置,其特征在于,所述第一归一化函数包括:其中,value表示检测数据;min表示检测出该检测数据value的检测设备的第一基准数 值;λ表示与检测数据value所处的基准数值区间相对应的目标数值区间的预设临界值中的 最小临界值;y表示检测数据value的归一化值。17. 根据权利要求15所述的装置,其特征在于,所述基准数值还包括第二基准数值,其 中,所述第二基准数值大于所述第一基准数值;以及,所述处理模块还包括: 第二处理子模块,用于针对每个检测数据,在该检测数据大于或等于检测出该检测数 据的检测设备的第一基准数值、并且小于或等于检测出该检测数据的检测设备的第二基准 数值的情况下,根据该检测数据与检测出该检测数据的检测设备的第一基准数值之间的差 值以及检测出该检测数据的检测设备的第二基准数值与第一基准数值之间的差值这两个 差值之间的比例、与该检测数据所处的基准数值区间相对应的目标数值区间的预设临界 值、以及第二归一化函数,对该检测数据进行归一化处理,得到该检测数据的归一化值。18. 根据权利要求17所述的装置,其特征在于,所述第二归一化函数包括:其中,value表示检测数据;min表示检测出该检测数据value的检测设备的第一基准数 值;max表示检测出该检测数据value的检测设备的第二基准数值;λ表示与检测数据value 所处的基准数值区间相对应的目标数值区间的预设临界值中的最小临界值;y表示检测数 据va Iue的归一化值。19. 根据权利要求17所述的装置,其特征在于,所述处理模块还包括: 第三处理子模块,用于针对每个检测数据,在该检测数据大于检测出该检测数据的检 测设备的第二基准数值的情况下,根据该检测数据与检测出该检测数据的检测设备的第一 基准数值之间的差值以及检测出该检测数据的检测设备的第二基准数值与第一基准数值 之间的差值这两个差值之间的比例、与该检测数据所处的基准数值区间相对应的目标数值 区间的预设临界值、最大归一化值、以及第三归一化函数,对该检测数据进行归一化处理, 得到该检测数据的归一化值,其中,所述最大归一化值为检测时间早于该检测数据的检测 时间的检测数据的归一化值中的最大者。20.根据权利要求19所述的装置,其特征在于,所述第三归一化函数包括:其中,value表示检测数据;min表示检测出该检测数据value的检测设备的第一基准数 值;max表示检测出该检测数据value的检测设备的第二基准数值;MX表示所述最大归一化 值;λ表示与检测数据value所处的基准数值区间相对应的目标数值区间的预设临界值中的 最小临界值;y表示检测数据value的归一化值。
【专利摘要】本发明公开了一种数据处理方法及装置。方法包括:获取由不同检测设备检测出的针对同一检测对象的同种指标的检测数据及每种检测设备针对该指标的基准数值,每种检测设备的基准数值用于形成该检测设备针对该指标的多个互不相交的基准数值区间;针对每个检测数据,根据检测出该检测数据的检测设备针对该指标的基准数值,确定该检测数据所处的基准数值区间;针对每个检测数据,根据与该检测数据所处的基准数值区间相对应的目标数值区间的预设临界值,对该检测数据进行归一化处理,得到该检测数据的归一化值;根据每个检测数据的归一化值,构建或更新该指标的检测数据分析模型。由此,可消除不同检测设备之间的检测偏差,使检测数据分析模型更准确。
【IPC分类】G06F19/00
【公开号】CN105488331
【申请号】CN201510819436
【发明人】李小军, 周维
【申请人】东软熙康健康科技有限公司
【公开日】2016年4月13日
【申请日】2015年11月23日

最新回复(0)