一种基于李雅普诺夫指数的电力系统负荷预测方法及装置的制造方法
【技术领域】
[0001] 本发明设及电力系统负荷预测领域,更具体地,设及一种基于李雅普诺夫指数的 电力系统负荷预测方法及装置。
【背景技术】
[0002] 在电力系统运行、控制和计划管理中,负荷预测决定了发电、输电和配电的合理安 排,是电力系统规划的重要组成部分。其中,短期负荷预测最主要的应用是为发电计划程序 提供数据,用来确定满足安全要求、运行约束、W及自然环境和设备限制的运行方案,对电 网运行的安全性、可靠性和经济性起着重要作用。如何提高预测精度是目前研究短期负荷 预测理论与方法的中屯、和重点,准确的短期负荷预测已成为实现电力系统管理现代化的重 要内容之一。
[0003] 长期W来,国内外学者对电力系统负荷预测理论进行了广泛而深入的研究,提出 了许多有效的方法,如回归分析法,时间序列法,神经网络法,小波分析法等。然而在实际问 题中,短期电力负荷往往表现为非线性,近年来,基于混浊理论的非线性时间序列预测模型 在日负荷预测中的应用引起了人们的广泛兴趣,越来越多的基于混浊理论的预测方法应用 于电力系统短期负荷预测。其中,基于最大Lyapunov指数预测法W其简单的原理、较小的计 算量得到了较为广泛的应用。但在某些实际预测中,该方法然存在预测精度不高的问题。
【发明内容】
[0004] 本发明提供一种提高预测精度的基于李雅普洛夫指数的电力系统负荷预测方法。
[0005] 本发明的有一目的在于提供一种基于李雅普洛夫指数的电力系统负荷预测装置。
[0006] 为了达到上述技术目的,本发明的技术方案如下:
[0007] -种基于李雅普洛夫指数的电力系统负荷预测方法,包括W下步骤:
[0008] (1)对电网的负荷数据进行采集和处理,形成可用的负荷时间序列{x(t),t=l, 2…,N},其中,N为负荷序列长度;
[0009] (2)对于负荷时间序列^(*)八=1,2-,,的,利用自相关函数法计算延迟时间1、利 用G-P算法计算嵌入维数m;
[0010] (3)根据所求的延迟时间τ和嵌入维数m进行相空间重构,
[0011] X(t) = [x(t) ,x(t+T),,x(t+(m-l)T) ]τ,t = 1,2,... ,M,M=N-(m-l)T;
[0012 ] (4)利用改进小数据量法计算重构相空间相轨迹的最大Lyapunov指数λ;
[0013] 所述改进小数据量法,是在计算最大Lyapunov指数过程中,取多个初始相点的演 化过程,让邻近轨道随时间演变多步,并取多个局部发散率的平均值;
[0014] (5)确定预测中屯、点X(M),在重构相空间寻找预测中屯、点的最近邻点X化),并利用 欧几里德公式计算两相点间的距离Lo,
[0015] L〇= ||X(M)-X化)I I ;
[0016] (6)确定最近邻点X化)的下一演化点X化+1),贝IJX(M+1)的预测值为:
[0017]
[0018] 式中,只有X(M+1)的最后一个分量x(化1)未知,则x(化1)的预测值为:
[0019]
[0020] (7)判断预测值的正、负取值。
[0021] 进一步地,所述利用自相关函数法计算延迟时间τ的方法为:
[0022] 首先利用自相关法求取时间延迟,对于负荷时间序列^(〇八=1,2-,,的,时间跨 度为jT的自相关函数为:
[0023]
[0024] 其中,τ为延迟时间,j为整数;
[0025] 固定j,做自相关函数关于τ的函数图象,τ = 1,2,···,当自相关函数下降到初始值 的1 -1 /e倍时,所得的时间τ即为重构相空间的延迟时间τ。
[00%] 进一步地,采用改进G-P算法计算嵌入维数m,其主要步骤如下:
[0027] (a)对于混浊时间序列{X(t),t = 1,2,…,N},根据自相关法求取的时间延迟τ,先 给定一个较小的值m,对应一个重构的相空间Χ( t);
[0028] (b)计算关联积分
[0029]
[0030] 其中,MX(i)-X(j)M表示相点X(i)与X(j)之间的距离,运里用范数来表示,Θ (·)为Heaviside单位函数;
[0031] (C)对于r^O某个取值范围,关联维数D与函数Cn(r)应满足对数线性关系
[0032] dD(m)=d(lnCn(r))/d(lnr);
[0033] (d)增加嵌入维数m,重复计算
(lnCn(r))/d(lnr)式,直到相应的D随m的增长在一定误差内不变为止,此时的D即为关联维 数,根据m > 2D+1得m即为嵌入维数。
[0034] 进一步地,所述改进小数据量法具体包括:
[0035] (a)设定相空间中Nc个初始点,寻找各初始点X(t)的化个邻近点X化);
[0036] (b)对相空间中每个初始点X(t),计算各邻点对经i步演化后的距离dt(i,k)
[0037] dt(i,k)= |X(t+i)-X化+i) |i = l,2,...,I [003引其中,I是最大演化时间步,取30-40;
[0039] (C)计算化个邻点对的i个演化时间步后的平均距离山(i)
[0040]
[0041] (d)对每个演化时间步i,计算所有初始点对应的dt(i)的对数平均值y(i)
[0042]
[0043] (e)作y(i)随i变化的曲线,对其直线部分用最小二乘法作回归直线,则直线的斜 率就是最大Lyapunov指数。
[0044] 进一步地,所述欧几里德公式为改进的欧几里德公式:
[0045] Lo= ||X(M)-X化)I I ;
[0046] 设,两者间的欧几里德距离公式为:
[0047]
[004引其中:A、B是两个时间序列,η为序列长度;山和bi分别为时间序列A、B的各分量,m平 衡偏移量因子。
[0049] 一种基于Lyapunov指数的电力系统负荷预测方法的装置,包括依次串行连接的数 据采集模块、输入模块、相空间重构模块、混浊特性判别模块、预测模块、预测效果仿真分析 模块、预测结果评价模块、输出模块,电网的历史负荷通过数据采集模块后,经过输入模块 进行数据处理,处理后的可用数据进入相空间重构模块,重构后的空间向量为混浊特性判 别模块的输入,如果最大Lyapunov指数大于零则进入预测模块、否则返回数据采集模块重 新进行其他时段的数据采集,仿真分析模块及结果评价模块对预测结果进行精度要求检 验,如果符合要求则进入输出模块、如果不符合要求则返回数据采集模块重新进行其他时 段的数据采集。
[0050] 与现有技术相比,本发明技术方案的有益效果是:
[0051] 本发明方法同时对计算关联维数的G-P算法、计算Lyapunov指数的小数据量法、对 欧几里德公式进行改进,利用运Ξ种改进方法对最大Lyapunov指数预测法进行改进,使预 测精度更进一步提高,预测结果更准确;本发明装置采用了模块化结构,模块化结构利于装 置升级和维护;同时在线实时采集负荷数据、在线建模、在线预报,是实时在线预报装置。
【附图说明】
[0052] 图1为本发明装置的模块组成框图;
[0053] 图2为本发明方法的流程图;
[0054] 图3为实施例中的仿真结果图。
【具体实施方式】
[0055] 附图仅用于示例性说明,不能理解为对本专利的限制;
[0056] 为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品 的尺寸;
[0057] 对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可W理解 的。
[005引下面结合附图和实施例对本发明的技术方案做进一步的说明。
[0化9] 实施例1
[0060] 如图1所示,本发明的基于李雅普洛夫化yapunov)指数的电力系统负荷预测方法 的装置采用了模块化结构,模块化结构利于装置升级和维护;同时在线实时采集负荷数据、 在线建模、在线预报,是实时在线预报装置;与W往装置相比提出增加了预测效果仿真分析 模块、预测结果评价模块,使应用者实时掌握预测误差,做出正确的判断、和决策。该装置由 数据采集卡、计算机系统、数据输出接口组成,具体包括数据采集模块、输入模块、相空间重 构模块、混浊特性判别模块、预测模块、预测效果仿真分析模块、预测结果评价模块、输出模 块,运些模块应用C++语言和MATLAB语言实现。所述数据采集模块用于对电网每天24小时整 点负荷(单位为:MWA)进行采集;所述输入模块可W用于输入历史负荷数据W及数据处理; 所述相空间重构模块用于计算重构相空间的参数-延迟时间和嵌入维数;所述混浊特性判 别模块用于计算最大Lyapunov指数,根据其值来进行负荷序列的混浊特性的识别;所述预 测模块用于利用最大Lyapunov指数预测模型进行负荷预测;所述预测结果评价模块用于检 验预测精度的各种误差指标;所述预测效果的仿真分析模块用于对负荷预测效果进行模拟 测试及分析;所述输出模块用于显示和输出负荷的预测结果。
[0061] 各模块之间的信号流程为数据采集模块、输入模块、相空间重构模块、混浊特性判 别模块、预测模块、预测效果的仿真分析模块、预测结果评价模块和输出模块依次串行连 接。各模块必须按顺序执行,上一模块的输出是下一模块的输入。电网的历史负荷通过数据 采集模块后,经过输入模块进行数据处理;处理后的可用数据进入相空间重构模块;重构后 的空间向量为混浊特性判别模块的输入;如果最大Lyapunov指数大于零则进入预测模块, 否则返回数据采集模块,重新进行其他时段的数据采集;利用仿真分析模块及结果评价模 块对预测结果进行精度要求检验,如果符合要求则进入输出模块,如果不符合要求则返回 数据采集模块,重新进行其他时段的数据采集。
[0062] 实施例2
[0063 ]如图2所示,本发明的基于Lyapunov指数的电力系统负荷预测方法,是一种新的、 更有效的预测方法。对计算关联维数的G-P算法、计算Lyapunov指数的小数据量法、对欧几 里德公式进行改进,利用运Ξ种改进方法对最大Lyapunov指数预测法进行改进,使预测精 度更进一步提高,预
测结果更准确。具体实现步骤如下:
[0064] (1)对电网的负荷数据进行采集和处理,形成可用的负荷时间序列{x(t),t=l, 2…,N},其中,N为负荷序列长度;
[0065] (2)对于负荷时间序列^(*)八=1,2-,,的,利用自相关函数法计算延迟时间1、利 用G-P算法计算嵌入维数m;
[0066] (3)根据所求的延迟时间τ和嵌入维数m进行相空间重构,
[0067] X(t) = [x(t) ,x(t+T),,x(t+(m-l)T) ]τ,t = 1,2,... ,M,M=N-(m-l)T;
[0068] (4)利用改进小数据量法计算重构相空间相轨迹的最大Lyapunov指数λ;
[0069] 所述改进小数据量法,是在计算最大Lyapunov指数过程中,取多个初始相点的演 化过程,让邻近轨道随时间演变多步,并取多个局部发散率的平均值;
[0070] (5)确定预测中屯、点X(M),在重构相空间寻找预测中屯、点的最近邻点X化),并利用 欧几里德公式计算两相点间的距离Lo,
[0071] Lo= ||X(M)-X化)I I ;
[0072] (6)确定最近邻点X化)的下一演化点X化+1),贝IJX(M+1)的预测值为:
[0073]
[0074] 式中,只有X(M+1)的最后一个分量x(化1)未知,则x(化1)的预测值为:
[0075]
[0076] (7)判断预测值的正、负取值。
[0077] 利用自相关函数法计算延迟时间τ的方法为:
[0078] 首先利用自相关法求取时间延迟,对于负荷时间序列{χ(t),t = 1,2···,Ν},时间跨 度为jT的自相关函数为:
[0079]
[0080] 其中,τ为延迟时间,j为整数;
[0081] 固定j,做自相关函数关于τ的函数图象,τ = 1,2,···,当自相关函数下降到初始值 的l-1/e倍时,所得的时间τ即为重构相空间的延迟时间τ。
[0082] 采用改进G-P算法计算嵌入维数m,其主要步骤如下:
[0083] (a)对于混浊时间序列^(〇,*=1,2^-,的,根据自相关法求取的时间延迟1,先 给定一个较小的值m,对应一个重构的相空间X(t);
[0084] (b)计算关联积分
[0085]
[00化]其中,Mx(i)-X(j)M表示相点X(i)与X(j)之间的距离,运里用范数来表示,Θ (·)为Heaviside单位函数;
[0087] (C)对于r^O某个取值范围,关联维数D与函数Cn(r)应满足对数线性关系
[0088] dD(m) =d( InCn(r) )/d(lnr);
[0089] (d)增加嵌入维数m,重复计算
、dD(m)=d (lnCn(r))/d(lnr)式,直到相应的D随m的增长在一定误差内不变为止,此时的D即为关联维 数,根据m > 2D+1得m即为嵌入维数。
[0090] 进一步地,所述改进小数据量法具体包括:
[0091] (a)设定相空间中Nc个初始点,寻找各初始点X(t)的化个邻近点X化);
[0092] (b)对相空间中每个初始点X(t),计算各邻点对经i步演化后的距离dt(i,k)
[OOW] dt(i,k)= |x(t+i)-x化+i) |i = l,2,...,I
[0094] 其中,I是最大演化时间步,取30-40;
[0095] (C)计算化个邻点对的i个演化时间步后的平均距离山(i)
[0096]
[0097] (d)对每个演化时间步i,计算所有初始点对应的dt(i)的对数平均值y(i)
[009引
[0099] (e)作y(i)随i变化的曲线,对其直线部分用最小二乘法作回归直线,则直线的斜 率就是最大Lyapunov指数。
[0100] 欧几里德公式为改进的欧几里德公式:
[0101] Lo= I |X(M)-X化)I I ;
[0102] 设,两者间的欧几里德距离公式为:
[0103]
[0104] 其中:A、B是两个时间序列,η为序列长度;ai和bi分别为时间序列A、B的各分量,m平 衡偏移量因子。
[0105] 相同或相似的标号对应相同或相似的部件;
[0106] 附图中描述位置关系的用于仅用于示例性说明,不能理解为对本专利的限制;
[0107] 显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对 本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可 W做出其它不同形式的变化或变动。运里无需也无法对所有的实施方式予W穷举。凡在本 发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求 的保护范围之内。
【主权项】
1. 一种基于李雅普洛夫指数的电力系统负荷预测方法,其特征在于,包括以下步骤: (1) 对电网的负荷数据进行采集和处理,形成可用的负荷时间序列{x(t),t = l,2···, N},其中,N为负荷序列长度; (2) 对于负荷时间序列{X(t),t = l,2…,N},利用自相关函数法计算延迟时间τ、利用G-p算法计算嵌入维数m; (3) 根据所求的延迟时间τ和嵌入维数m进行相空间重构, X(t) = [x(t) ,χ(?+τ), ··· ,x(t+(m-l)τ) ]T,t = 1,2, ··· ,M,M=N-(m-l)x ; (4) 利用改进小数据量法计算重构相空间相轨迹的最大Lyapunov指数λ; 所述改进小数据量法,是在计算最大Lyapunov指数过程中,取多个初始相点的演化过 程,让邻近轨道随时间演变多步,并取多个局部发散率的平均值; (5) 确定预测中心点X(M),在重构相空间寻找预测中心点的最近邻点X(K),并利用欧几 里德公式计算两相点间的距离L0, Lo=I IX(M)-X(K)I I ; (6) 确定最近邻点X(K)的下一演化点X(K+1),则X(M+1)的预测值为: X(M+1)-X(M)| I = I |X(K+1)-X(K)| |eA 式中,只有Χ(Μ+1)的最后一个分量χ(Ν+1)未知,则χ(Ν+1)的预测值为:(7) 判断预测值的正、负取值。2. 根据权利要求1所述的基于李雅普洛夫指数的电力系统负荷预测方法,其特征在于, 所述利用自相关函数法计算延迟时间τ的方法为: 首先利用自相关法求取时间延迟,对于负荷时间序列{以〇3=1,2-少},时间跨度为 j τ的自相关函数为:其中,τ为延迟时间,j为整数; 固定j,做自相关函数关于τ的函数图象,τ = 1,2,···,当自相关函数下降到初始值的1-Ι/e倍时,所得的时间τ即为重构相空间的延迟时间τ。3. 根据权利要求2所述的基于李雅普洛夫指数的电力系统负荷预测方法,其特征在于, 采用改进G-P算法计算嵌入维数m,其主要步骤如下: (a) 对于混沌时间序列{x(t),t = l,2,…,N},根据自相关法求取的时间延迟τ,先给定 一个较小的值m,对应一个重构的相空间X(t); (b) 计算关联积分其中,I |X(i)_X(j)| I表示相点X(i)与X(j)之间的距离,这里用⑴-范数来表示,θ( ·) 为Heaviside单位函数; (c) 对于r-Ο某个取值范围,关联维数D与函数Cn(r)应满足对数线性关系 dD(m) = d(InCn(r) )/d(Inr); (d)增加嵌入维数m,重复计算(r))/d(lnr)式,直到相应的D随m的增长在一定误差内不变为止,此时的D即为关联维数,根 据m2 2D+l得m即为嵌入维数。4. 根据权利要求3所述的基于李雅普洛夫指数的电力系统负荷预测方法,其特征在于, 所述改进小数据量法具体包括: (a) 设定相空间中N。个初始点,寻找各初始点X⑴的Ni个邻近点X(k); (b) 对相空间中每个初始点X(t),计算各邻点对经i步演化后的距离dt(i,k) dt(i,k)= IX(t+i)-X(k+i) |? = 1,2,···,Ι 其中,I是最大演化时间步,取30-40; (c) 计算N1个邻点对的i个演化时间步后的平均距离dt(i)(d) 对每个演化时间步i,计算所有初始点对应的dt(i)的对数平均值y(i)(e) 作y (i)随i变化的曲线,对其直线部分用最小二乘法作回归直线,则直线的斜率就 是最大Lyapunov指数。5. 根据权利要求4所述的基于李雅普洛夫指数的电力系统负荷预测方法,其特征在于, 所述欧几里德公式为改进的欧几里德公式: Lo=I IX(M)-X(K)I I ; 设,两者间的欧几里德距离公式为:其中:A、B是两个时间序列,η为序列长度;&1和1^分别为时间序列A、B的各分量,m平衡偏 移量因子。6. -种应用如权利要求1-5任一项所述的基于李雅普洛夫指数的电力系统负荷预测方 法的装置,其特征在于,包括依次串行连接的数据采集模块、输入模块、相空间重构模块、混 沌特性判别模块、预测模块、预测效果仿真分析模块、预测结果评价模块、输出模块,电网的 历史负荷通过数据采集模块后,经过输入模块进行数据处理,处理后的可用数据进入相空 间重构模块,重构后的空间向量为混沌特性判别模块的输入,如果最大Lyapunov指数大于 零则进入预测模块、否则返回数据采集模块重新进行其他时段的数据采集,仿真分析模块 及结果评价模块对预测结果进行精度要求检验,如果符合要求则进入输出模块、如果不符 合要求则返回数据采集模块重新进行其他时段的数据采集。
【专利摘要】本发明提供一种基于李雅普诺夫指数的电力系统负荷预测方法及装置,方法对计算关联维数的G-P算法、计算Lyapunov指数的小数据量法、对欧几里德公式进行改进,利用这三种改进方法对最大Lyapunov指数预测法进行改进,使预测精度更进一步提高,预测结果更准确;装置采用了模块化结构,模块化结构利于装置升级和维护;同时在线实时采集负荷数据、在线建模、在线预报,是实时在线预报装置。
【IPC分类】G06F19/00
【公开号】CN105488335
【申请号】CN201510822449
【发明人】陈集思, 杨俊华, 陈俊宏, 林卓胜
【申请人】广东工业大学
【公开日】2016年4月13日
【申请日】2015年11月23日