一种虹膜内边缘的快速精确的定位方法
【技术领域】
[0001] 本发明属于图像生物识别技术领域,设及一种虹膜内边缘的快速精确的定位方 法。
【背景技术】
[0002] 随着信息技术、网络技术的快速发展,W及网络信息化时代的一大特征就是身份 的数字化和隐性化,且传统的身份鉴别方法是基于鉴别一些标识个人身份的事物,主要包 括两个方面:(1).身份标识物品;(2).身份标识知识。运些传统的身份识别存在着严重的缺 陷,使人类安全面临重大的挑战。而虹膜识别是当前应用最为方便和精确的一种。因此,如 何准确鉴定一个人的身份,保护信息安全是当今信息化时代必须解决的一个关键社会问 题,具有十分重大的价值与市场应用前景非常广阔。
[0003] 虹膜内边缘的准确快速定位是虹膜定位的重要关键一部分,而虹膜定位是虹膜识 别技术中的关键基础环节,对后期的特征提取和模式匹配步骤有很大的作用。虹膜边缘定 位发展至今,产生了许多的定位算法,但绝大多数算法要么受到定位精度的限制,要么受到 定位速度的限制,在或者需要预先满足许多前提条件的问题等,都存在着一些缺陷,而被产 业界广泛接受的始终还是那些简单、高效且无需过多前提条件的虹膜定位方法。所W,研究 一种内边缘的简单快速精确的定位算法仍然是一个富有挑战性的课题。
【发明内容】
[0004] 本发明针对现有技术的不足,提出了一种虹膜内边缘的快速精确的定位方法。
[0005] 本发明解决技术问题所采取的技术方案步骤如下:
[0006] 步骤(1).虹膜图像采集。
[0007] 步骤(2).对提取的虹膜灰度图像进行边缘点提取,运里用的是基于改进Canny算 子进行检测边缘。
[000引步骤(3).对提取的虹膜灰度图像利用小波变换提取边缘局部有效信息。
[0009] 步骤(4).对步骤(2)和步骤(3)提取的边缘图像进行边缘强度自适应融合,获得最 终边缘图像融合图。
[0010] 步骤(5).对融合的新边缘图深度进行去除多余的杂边缘点和干扰点,运里用的是 基于边缘信息的四向扫描法提取目标物。
[0011] 步骤(6).之后再进行重新确定边缘点,将其进行数据存储W及显示于虹膜原图 中。
[0012] 本发明的有益效果:
[0013] (1).本发明不仅降低算法的运算量,而且避免了不必要的纹理细节,从而使后期 的图像分割结果更快且更准确。
[0014] (2).四向区域扫描法是一种基于边缘几何信息的图像分割,所有参与的边缘点都 可完全独立完成算法,无需与其他的边缘点进行信息交互,具备很好的并行特性,对算法的 速度有很大程度的提升。
[0015] (3).可W通过对整幅矩形图像的四条边界线选择性去除和添加,W不同颜色区 分,而且扫描长度参数是可控的,可筛选出不同面积的闭合区域;运样W利于瞳孔边缘的准 确检测与定位。
【附图说明】
[0016] 图1为本发明的主流程图;
[0017] 图2为本发明步骤(2)的流程图;
[0018] 图3为本发明步骤(5)四向区域填充算法的流程图。
[0019] 具体的实施方式:
[0020] W下结合附图对本发明作进一步的描述。
[0021] 如图1所示,本发明具体的技术方案为:
[0022] 步骤(1).虹膜图像采集。由于虹膜的区分主要在于纹理细节的不同,因此首要的 任务是获取高质量的虹膜图像,但用普通的CO)摄像头在正常光照下是很难获得清晰的虹 膜图像且现有的虹膜取像装置仍价格昂贵,运里使用的是中科院提供的虹膜库,里面包含 四万屯千多张各式各样条件下的虹膜图,很具有研究价值。
[0023] 步骤(2).对中科院提供的虹膜灰度图像进行边缘点提取,运里用的是基于改进 Canny算子进行检测边缘。由于虹膜图像的获取过程是着力于高质量的图像获取,因此,从 信息理论的角度来看,最好的预处理是没有预处理。对采集到的虹膜图像直接进行分析处 理。
[0024] 首先,根据几万张的虹膜图片实验检测结果分析,设置它的空间尺度系数和高阔 值,W控制图像平滑程度和筛除次要边缘;然后根据图2做进一步的说明,具体如下:
[0025] 第一步:用高斯滤波器平滑图像;
[00%]其高斯平滑函数为:
*原图像与高斯平滑函数卷积:H (x,y)=f(x,y)*G(x,y);
[0027]第二步:先对高斯平滑函数进行求一阶偏导,分别为:
[002引
[0029] 用一阶偏导与图像卷积,然后计算每个像素点的梯度幅值和梯度方向,其分别为:
白(x,y)=曰ret曰n(Q (x,y)/P(x,y));
[0030] 第Ξ步:对梯度幅值进行非极大值抑制;
[0031] 第四步:进行高阔值边缘检测生成强边缘图。
[0032] 步骤(3).由于小波变换具有多分辨率分析的特点,在时频两域都具有表征信号局 部特征的能力,且它的窗口面积固定不变,而窗口长度及宽度可W自动变化,能根据需要对 信号高、低频部分具体分析,所W运里使用小波变换进行提取虹膜图像边缘的局部特征,然 后与步骤(2)中的强边缘图进行信息融合,目的是为了尽量弥补瞳孔的遗漏边缘点,使瞳孔 的边缘是一个完整的闭合区域。
[0033] 对于尺度参数j,平移参数k,将扣,k(t)中的连续变量j和k取做整数离散形式,将其 表示为:
[0034]
[0035] 得到离散小波,将其表示为:
[0036] Wf( j,k) = (f(t) ,itj,k(t))
[0037] 小波变换通过参数j、k的调节,从而实现在频域与时域方面的局部化作用。
[0038] 步骤(4).由于边缘图像只保留了图像的边缘信息,而且为了使融合后图像的边缘 效果达到最佳,选取基于小波变换的窗口内边缘强度自适应融合算法。
[0039] 基本思想:选定窗口,计算窗内各像素点的边缘强度,并W归一化的边缘强度作为 权值对两幅图像的高频系数进行加权求和。
[0040] 设。1^,7)、。2^,7)分别为待融合的两幅图像^^,7)为融合后的图像。〇1^,7)、 D2(x,y)分别为两幅图像矩阵中点(x,y)处的像素值,D(x,y)为融合后图像点(x,y)处的像 素值。为第m幅图像在尺度系数为j、方向系数为k时,点(x,y)处经小波分解得到的 系数;及LKx,y为第m幅图像在尺度系数为j、方向系数为k时,W (X,y)点为中屯、的窗口区域 中小波系数的均值。W为窗口区域,设所选区域是边长为a的方形区域,则W=a*a。
[0041] 点(x,y)处的边缘强度定义为:
[0042]
[0043] 两幅图像中,.1')、的权系数取为:
[0044]
[0045] 将小波边缘图与强边缘图融合后,得到的最终边缘图像用F(x,y)来表示,则各像 素点的像素值D (X,y)表示为:
[0046]
[0047] 步骤(5).对获得的融合边缘图进行深度彻底的去除多余的杂边缘点和干扰点,运 里用的是基于边缘信息的四向扫描法。根据图3所示。
[004引用四个方向(从上到下,从左到右,从下到上,从右到左)W不同颜色进行扫描填 充,首先设置扫描长度参数和颜色参数,再是进行第一次的从上到下的区域扫描填充,根据 图3流程依次进行,其中上一次的填充色将成为下一次的扫描检测色,最后一个方向的填充 色将是唯一的保留色,即分割出了所需要的提取目标物。
[0049]步骤(6).之后再对提取的目标物进行重新确定边缘点,将其进行数据存储W及显 示于虹膜原图中。
【主权项】
1. 一种虹膜内边缘的快速精确的定位方法,其特征在于该方法包括以下步骤: 步骤(1).虹膜图像采集; 步骤(2).对提取的虹膜灰度图像进行边缘点提取; 步骤(3).对提取的虹膜灰度图像利用小波变换提取边缘局部有效信息; 步骤(4).对步骤(2)和步骤(3)提取的边缘图像进行边缘强度自适应融合,获得最终边 缘图像融合图; 步骤(5).对融合的新边缘图深度进行去除多余的杂边缘点和干扰点; 步骤(6).之后再进行重新确定边缘点,将其进行数据存储以及显示于虹膜原图中。2. 根据权利要求1所述的虹膜内边缘的快速精确定位方法,其特征在于:步骤(2)中使 用了改进Canny算子进行检测边缘,具体是: 首先,根据几万张的虹膜图片实验检测结果分析,设置它的空间尺度系数和高阈值,以 控制图像平滑程度和筛除次要边缘;然后如下: 第一步:用高斯滤波器平滑图像; 其高斯平滑函数为:.原图像与高斯平滑函数卷积:H(x, y)=f(x,y)*G(x,y); 第二步:先对高斯平滑函数进行求一阶偏导,分别为:用一阶 偏导与图像卷积,然后计算每个像素点的梯度幅值和梯度方向,其分别为:P(x,y)=f(x, y)*Gx,Q(x,y) = f(x,y)*Gy,第三步:对梯度幅值进行非极大值抑制; 第四步:进行高阈值边缘检测生成强边缘图。3. 根据权利要求1所述的虹膜内边缘的快速精确定位方法,其特征在于:步骤(3)中利 用小波变换提取边缘局部有效信息,具体是: 对于尺度参数j,平移参数k,将k(t)中的连续变量j和k取做整数离散形式,将其表示 为: yj,k(t) = 2j/2y(2Jt-k) 得到离散小波,将其表示为: Wf(j,k) = (f(t) ,yj,k(t)) 小波变换通过参数j、k的调节,从而实现在频域与时域方面的局部化作用。4. 根据权利要求1所述的虹膜内边缘的快速精确定位方法,其特征在于:步骤(4)具体 是: 设?1(^7)、&(^7)分别为待融合的两幅图像^(^ 7)为融合后的图像;01&,7)、02&, y)分别为两幅图像矩阵中点(x,y)处的像素值,D(x,y)为融合后图像点(x,y)处的像素值; 为第m幅图像在尺度系数为j、方向系数为k时,点(x,y)处经小波分解得到的系数; dL, (x,j_为第m幅图像在尺度系数为j、方向系数为k时,以(X,y)点为中心的窗口区域中小 波系数的均值;W为窗口区域,设所选区域是边长为a的方形区域,则W=a*a; 点(x,y)处的边缘强度定义为:两幅图像中,的权系数取为:将小波边缘图与强边缘图融合后,得到的最终边缘图像用F(x,y)来表示,则各像素点 的像素值D(x,y)表示为:5.根据权利要求1所述的虹膜内边缘的快速精确定位方法,其特征在于:步骤(5)使用 的是基于边缘信息的四向扫描法提取目标物,具体是: 采用从上到下、从左到右、从下到上、从右到左这四个方向,以不同颜色进行扫描填充, 首先设置扫描长度参数和颜色参数,再是进行第一次的从上到下的区域扫描填充,其中上 一次的填充色将成为下一次的扫描检测色,最后一个方向的填充色将是唯一的保留色,即 分割出了所需要的提取目标物。
【专利摘要】本发明涉及一种虹膜内边缘的快速精确定位方法。现有的虹膜内边缘定位方法要么受到定位精度的限制,要么受到定位速度的限制,在或者需要预先满足许多前提条件的问题等情况下,很难满足图像生物识别技术的需求。本发明对采集的虹膜图像先进行边缘点提取;然后对前面提取的两个边缘图像进行边缘强度自适应融合,获得最终边缘图像融合图;之后对融合的新边缘图深度进行去除多余的杂边缘点和干扰点;最后再进行重新确定边缘点,将其进行数据存储以及显示于虹膜原图中。本发明对虹膜内边缘的定位在速度和精确度上都有很大程度的提高,能够满足图像生物识别技术的需求。
【IPC分类】G06K9/00
【公开号】CN105488494
【申请号】CN201511006255
【发明人】王效灵, 俞斌德, 李宁宁, 林云, 杨佐丞
【申请人】浙江工商大学
【公开日】2016年4月13日
【申请日】2015年12月29日