一种图像处理方法及装置的制造方法
【技术领域】
[0001 ] 本发明涉及图像处理相关技术,尤其涉及一种图像处理方法及装置。
【背景技术】
[0002]随着人们日益丰富的文化需要和智能影像技术的发展,个人和家庭拥有的影像拍摄终端越来越多,朋友间、家庭范围内所拥有的视频、照片数量也越来越多,因此,对照片、视频内人物进行人物特征分析,并对分析结果进行合理运用也显得越来越重要。
[0003]目前,尚不存在一种图像处理方法,能够对图像人物特征进行分析,并依据分析结果推送给用户适合所述图像人物的特定文字、音乐等多媒体信息。
【发明内容】
[0004]有鉴于此,本发明实施例期望提供一种图像处理方法及装置,能够提升图像资料的综合利用价值,能使用户之间的交互更有针对性。
[0005]为达到上述目的,本发明的技术方案是这样实现的:
[0006]本发明实施例提供了一种图像处理方法,所述方法包括:
[0007]对检测对象的样本照片进行对象属性分析,获得所述检测对象的属性特征;
[0008]依据不同的参考特征获取对应所述检测对象的不同的对象特征序列,并对获得的对象特征序列进行加权处理,得到所述检测对象的特征向量和综合特征向量;
[0009]依据所述属性特征、所述特征向量和综合特征向量获得所述检测对象的标识特征,并依据所述标识特征输出对应所述检测对象的多媒体信息。
[0010]上述方案中,所述对检测对象的样本照片进行对象属性分析之前,所述方法还包括:
[0011 ] 对样本照片进行检测对象识别,并依据识别出的不同的检测对象对样本照片进行分类。
[0012]上述方案中,所述依据识别出的不同的检测对象对样本照片进行分类之前,所述方法还包括:解析样本照片,获得所有样本照片的拍摄时间信息和拍摄地点信息,并依据拍摄时间和拍摄地点的就近原则对样本照片进行分类。
[0013]上述方案中,所述依据不同的参考特征获取对应所述检测对象的不同的对象特征序列包括:
[0014]对所述检测对象的样本照片进行不同参考特征的识别,依据识别出的参考特征获得对应的对象特征,对获得的所有样本照片的不同的参考特征对应的对象特征进行排序,获得不同参考特征对应所述检测对象的不同的对象特征序列。
[0015]上述方案中,所述依据所述属性特征、所述特征向量和综合特征向量获得所述检测对象的标识特征包括:
[0016]将所述属性特征、所述特征向量和综合特征向量与预设特征数据库中的标识特征模型进行匹配,获得所述检测对象的标识特征。
[0017]上述方案中,所述依据所述标识特征输出对应所述检测对象的多媒体信息包括:
[0018]将所述检测对象的标识特征信息与预设特征数据库中的对象交互模型进行匹配,获得所述检测对象的交互类型,并依据所述交互类型输出对应所述检测对象的多媒体信肩、Ο
[0019]本发明实施例还提供了一种图像处理装置,所述装置包括:获取模块、处理模块及输出模块;其中,
[0020]所述获取模块,用于对所述检测对象的样本照片进行对象属性分析,获得所述检测对象的属性特征;
[0021]所述处理模块,用于依据不同的参考特征获取对应所述检测对象的不同的对象特征序列,并对获得的对象特征序列进行加权处理,得到所述检测对象的特征向量和综合特征向量;
[0022]所述输出模块,用于依据所述属性特征、所述特征向量和综合特征向量获得所述检测对象的标识特征,并依据所述标识特征输出对应所述检测对象的多媒体信息。
[0023]上述方案中,所述装置还包括:分类模块,用于对样本照片进行检测对象识别,并依据识别出的不同的检测对象对样本照片进行分类。
[0024]上述方案中,所述装置还包括:预处理模块,用于解析样本照片,获得所有样本照片的拍摄时间信息和拍摄地点信息,并依据拍摄时间和拍摄地点的就近原则对样本照片进行分类。
[0025]上述方案中,所述处理模块,具体用于对所述检测对象的样本照片进行不同参考特征的识别,依据识别出的参考特征获得对应的对象特征,并对获得的所有样本照片的不同的参考特征对应的对象特征进行排序,获得不同参考特征对应所述检测对象的不同的对象特征序列。
[0026]上述方案中,所述输出模块,具体用于将所述属性特征、所述特征向量和综合特征向量与预设特征数据库中的标识特征模型进行匹配,获得所述检测对象的标识特征。
[0027]上述方案中,所述输出模块,具体用于将所述检测对象的标识特征信息与预设特征数据库中的对象交互模型进行匹配,获得所述检测对象的交互类型,并依据所述交互类型输出对应所述检测对象的多媒体信息。
[0028]本发明实施例所提供的图像处理方法及装置,对检测对象的样本照片进行对象属性分析,获得所述检测对象的属性特征;依据不同的参考特征获取对应所述检测对象的不同的对象特征序列,并对获得的对象特征序列进行加权处理,得到所述检测对象的特征向量和综合特征向量;依据所述属性特征、所述特征向量和综合特征向量获得所述检测对象的标识特征,并依据所述标识特征输出对应所述检测对象的多媒体信息。如此,能够提升图像资料的综合利用价值;当检测对象为人物对象时,基于检测对象的标识特征以及特征向量等最终输出对应检测对象的多媒体信息,所输出的多媒体信息更符合检测对象的特点及喜好,因此,能使用户与检测对象的交互更有针对性,从而提升用户的人际交互能力及用户体验感。
【附图说明】
[0029]图1为本发明实施例一图像处理方法流程示意图;
[0030]图2所示为本发明实施例对样本照片进行预处理的方法流程示意图;
[0031]图3所示为本发明实施例对样本照片进行面部表情情感特征识别的方法流程示意图;
[0032]图4所示为本发明实施例对样本照片进行动作情感特征识别的方法流程示意图;
[0033]图5所示为本发明实施例对样本照片进行人际交互情感特征识别的方法流程示意图;
[0034]图6所示为本发明实施例对样本照片进行历史天气情感特征识别的方法流程示意图;
[0035]图7所示为本发明实施例对样本照片进行背景特定物体情感特征识别的方法流程意图;
[0036]图8为本发明实施例二图像处理方法流程示意图;
[0037]图9为本发明实施例图像处理装置组成结构示意图。
【具体实施方式】
[0038]在本发明实施例中,对检测对象的样本照片进行对象属性分析,获得所述检测对象的属性特征;依据不同的参考特征获取对应所述检测对象的不同的对象特征序列,并对获得的对象特征序列进行加权处理,得到所述检测对象的特征向量和综合特征向量;依据所述属性特征、所述特征向量和综合特征向量获得所述检测对象的标识特征,并依据所述标识特征输出对应所述检测对象的多媒体信息。
[0039]图1为本发明实施例一图像处理方法流程示意图,如图1所示,本实施例图像处理方法流程包括:
[0040]步骤101:对检测对象的样本照片进行对象属性分析,获得所述检测对象的属性特征;
[0041]本步骤之前,所述方法还包括:对样本照片进行检测对象识别,并依据识别出的不同的检测对象对样本照片进行分类;
[0042]在本发明实施例中,所述检测对象可以为人物对象;所述对样本照片进行检测对象识别包括:对样本照片进行人脸识别。
[0043]近一步的,所述依据识别出的不同的检测对象对样本照片进行分类之前所述方法还包括:对样本照片进行预处理;图2所示为本发明实施例对样本照片进行预处理的方法流程示意图,如图2所示,本实施例对样本照片进行预处理的方法包括:
[0044]步骤2a:识别样本文件是样本照片还是样本影像文件,如果是样本照片,执行步骤2b ;如果是样本影像文件,执行步骤2c ;
[0045]这里,所述识别样本文件是样本照片还是样本影像文件包括:通过样本文件的格式识别所述样本文件是样本照片或者样本影像文件;如文件格式为.jpg/jpeg的为样本照片,文件格式为.mp4的为样本影像文件。
[0046]步骤2b:解析样本照片,获得所有样本照片的拍摄时间信息和拍摄地点信息,并依据拍摄时间和拍摄地点的就近原则对样本照片进行分类,结束本处理流程;
[0047]这里,所述拍摄时间和拍摄地点的就近原则包括:拍摄时间就近且拍摄地点就近的原则;其中,拍摄时间就近是指照片的拍摄时间距离最近,拍摄地点就近是指照片拍摄的地点距离最近;如:拍摄时间均为2014年9月10日、拍摄地点均为天安门的样本照片分为一类。
[0048]步骤2c:将所述样本影像文件截取为若干样本照片,执行步骤2b ;
[0049]这里,所述将所述样本影像文件截取为若干样本照片包括:通过运动影像预测算法,依据检测对象的存在情况将所述样本影像文件截取为若干样本照片。
[0050]进一步的,所述对检测对象的样本照片进行对象属性分析,获得所
述检测对象的属性特征包括:
[0051]对不同检测对象的样本照片进行对象属性识别,将识别出的对象属性与预设数据库中的对比标准参照物进行比较,获取所述检测对象的属性特征;
[0052]这里,所述对象属性可以包括:皱纹、身材、肤色等;
[0053]所述属性特征可以包括:性别、年龄、身高、体重等。
[0054]步骤102:依据不同的参考特征获取对应所述检测对象的不同的对象特征序列,并对获得的对象特征序列进行加权处理,得到所述检测对象的特征向量和综合特征向量;
[0055]这里,所述依据不同的参考特征获取对应所述检测对象的不同的对象特征序列包括:
[0056]对所述检测对象的样本照片进行Μ个参考特征的识别,并依据识别出的Μ个参考特征获得对应所述参考特征的对象特征,并对获得的所有样本照片的Μ个参考特征对应的对象特征进行排序,获得所述Μ个参考特征对应所述检测对象的Μ个对象特征序列;
[0057]所述依据不同的参考特征获取对应所述检测对象的不同的对象特征序列具体包括:
[0058]对样本照片进行第一参考特征的识别,并将获得的第一参考特征与预设特征数据库中的第一参考特征信息进行匹配,获得所述第一参考特征对应所述检测对象的对象特征,对获得所述检测对象的所有样本照片的对象特征按时间进行排序,获得所述检测对象的第一对象特征序列;
[0059]对样本照片进行第二参考特征的识别,并将获得的第二参考特征与预设特征数据库中的第二参考特征信息进行匹配,获得所述第二参考特征对应的所述检测对象的对象特征,对获得所述检测对象的所有样本照片的对象特征按时间进行排序,获得所述检测对象的第二对象特征序列;
[0060]以此类推,对样本照片进行第Μ参考特征的识别,并将获得的第一参考特征与预设特征数据库中的第Μ参考特征信息进行匹配,获得所述第Μ参考特征对应的所述检测对象的对象特征,对获得所述检测对象的所有对象特征按时间进行排序,获得所述检测对象的第Μ对象特征序列;其中,所述Μ为正整数;
[0061]这里,所述Μ的取值可以依据实际情况进行设定,且当Μ取值大于2时,具体应用本发明实施例的方法时,可采用Μ个参考特征中的任意一个或多个组合来实现。
[0062]在本发明一个实施例中,所述Μ的取值可以为5 ;所述第一参考特征可以为面部表情特征;所述第二参考特征可以为动作特征;所述第三参考特征可以为人际交互特征;所述第四参考特征可以为天气情况特征;第五参考特征可以为背景特定物体特征;
[0063]图3所示为本发明实施例对样本照片进行面部表情情感特征识别的方法流程示意图,如图3所示,本实施例对样本照片进行面部表情情感特征识别的方法包括:
[0064]步骤3a:对人物对象的样本照片进行面部表情识别;
[0065]这里,所述面部表情特征包括:微笑、大笑、板脸等。
[0066]步骤3b:将获得的面部表情特征与预设特征数据库中的面部表情特征信息进行匹配,获得所述面部表情特征对应的所述人物对象的面部表情情感特征;
[0067]这里,所述情感特征包括:喜、怒、哀、乐等。
[0068]步骤3c:对获得的所述人物对象的所有样本照片的面部表情情感特征按时间进行排序,获得所述人物对象的面部表情情感特征序列。
[0069]图4所示为本发明实施例对样本照片进行动作情感特征识别的方法流程示意图,如图4所示,本实施例对样本照片进行动作情感特征识别的方法包括:
[0070]步骤4a:对人物对象的样本照片进行动作特征识别;
[0071]这里,所述动作特征包括:跳跃、摆V字等。
[0072]步骤4b:将获得的动作特征与预设特征数据库中的动作特征信息进行匹配,获得所述动作特征对应的所述人物对象的动作情感特征;
[0073]这里,所述动作情感特征包括:活泼、好动、沉静、稳重等。
[0074]步骤4c:对获得的所述人物对象的所有样本照片的动作情感特征按时间进行排序,获得所述人物对象的动作情感特征序列。
[0075]图5所示为本发明实施例对样本照片进行人际交互情感特征识别的方法流程示意图,如图5所示,本实施例对样本照片进行人际交互情感特征识别的方法包括:
[0076]步骤5a:对人物对象的样本照片进行人际交互特征识别;
[0077]这里,所述人际交互特征包括:所述人物对象与样本照片中其他人物对象的交互关系及位置关系,如:与某人物对象拥抱或与其他人物对象间隔较远等。
[0078]步骤5b:将获得的人际交互特征与预设特征数据库中的人际交互特征信息进行匹配,获得所述人际交互特征对应的所述人物对象的人际交互情感特征;
[0079]这里,所述人际交互情感特征包括:热情、富有亲和力、冷漠等。
[0080]步骤5c:对获得的所述人物对象的所有样本照片的情感特征按时间进行排序,获得所述人物对象的人际交互情感特征序列。
[0081]图6所示为本发明实施例对样本照片进行历史天气情感特征识别的方法流程示意图,如图6所示,本实施例对样本照片进行历史天气情感特征识别的方法包括:
[0082]步骤6a:对人物对象的样本照片的天气情况特征进行识别;
[0083]这里所述天气情况特征包括:晴天、阴天、雨天等。
[0084]步骤6b:将获得的天气情况特征与预设特征数据库中的天气情况特征信息进行匹配,获得所述天气情况特征对应的所述人物对象的天气情况情感特征;
[0085]这里,所述天气情况情感特征包括:开朗、忧郁、浪漫等。
[0086]步骤6c:对获得的所述人物对象的所有样本照片的天气情况情感特征按时间进行排序,获得所述人物对象的天气情况情感特征序列。
[0087]图7所示为本发明实施例对样本照片进行背景特定物体情感特征识别的方法流程示意图,如图7所示,本实施例对样本照片进行背景特定物体情感特征识别的方法包括:
[0088]步骤7a:对人物对象的样本照片的背景特定物体进行识别;
[0089]这里,所述背景特定物体包括:花草、历史人文古迹等。
[0090]步骤7b:将获得的背景特定物体特征与预设特征数据库中的背景特定物体特征信息进行匹配,获得所述特定物体特征对应的所述人物对象的背景特定物体情感特征;
[0091]这里,所述背景特定物体情感特征包括:爱旅游、爱历史等。
[0092]步骤7c:对获得的所述人物对象的所有样本照片的情感特征按时间进行排序,获得所述人物对象的背景特定物体情感特征序列。
[0093]对所述Μ个对象特征序列进行加权处理,获取所述检测对象的特征向量和综合特征向量包括:
[0094]对所述Μ个对象特征序列进行加权处理,获得所述检测对象的特征曲线图,并依据所述特征曲线图获得所述检测对象的特征向量,将所述特征向量与特征数据库中综合向量模型进行匹配,获得所述检测对象的综合特征向量;
[0095]这里,所述加权处理过程中的加权参数可依据实际情况进行设定;
[0096]所述特征向量为所述检测对象在特定时间的特征向量,如特定时间的情感向量。
[0097]本发明实施例中所述特征数据库为依据经验统计预设的数据库。
[0098]当所述检测对象为人物对象时,所述特征向量可以为人物对象在特定时间的性格取向的指数,指数范围为(1,10),所述综合特征向量可以为人物对象整体的性格取向;如:某人物对象在早晨8点的开朗指数为8,其整体开朗指数即综合特征向量为5。
[0099]步骤103:依据所述属性特征、所述特征向量和综合特征向量获得所述检测对象的标识特征,并依据所述标识特征输出对应所述检测对象的多媒体信息;
[0100]这里,所述依据所述属性特征、所述特征向量和综合特征向量获得所述检测对象的标识特征包括:
[0101]将所述属性特征、所述特征向量和综合特征向量与特征数据库中标识特征模型进行匹配,获得所述检测对象的标识特征;
[0102]所述依据所述标识特征输出对应所述检测对象的多媒体信息包括:
[0103]将所述标识特征信息与预设特征数据库中的对象交互模型进行匹配,获得所述检测对象的交互类型,并依据所述交互类型输出相应的多媒体信息。
[0104]在本发明实施例中,所述标识特征可以为性格特征;所述交互类型包括:所述检测对象在特定时间段内的人际交往取向;例如:某人物对象在晚上8点到10点间比较open,乐意与人交往;
[0105]所述多媒体信息包括:文字、图片、音乐、影像等。
[0106]图8为本发明实施例二图像处理方法流程示意图,如图8所示,本实施例图像处理方法流程包括:
[0107]步骤801:识别样本文件是样本照片还是样本影像文件,如果是样本照片执行步骤802 ;如果是样本影像文件,执行步骤807 ;
[0108]本步骤具体包括:通过样本文件的格式识别所述样本文件是样本照片或者样本影像文件;如文
件格式为.jpg/jpeg的为样本照片,文件格式为.mp4的为样本影像文件。
[0109]步骤802:依据拍摄时间和拍摄地点的就近原则对样本照片进行分类;
[0110]本步骤具体包括:解析样本照片,获得所有样本照片的拍摄时间信息和拍摄地点信息,并依据拍摄时间和拍摄地点的就近原则对样本照片进行分类;
[0111]其中,所述拍摄时间和拍摄地点的就近原则包括:拍摄时间就近且拍摄地点就近的原则;其中,拍摄时间就近是指照片的拍摄时间距离最近,拍摄地点就近是指照片拍摄的地点距离最近;如:拍摄时间均为2014年9月10日、拍摄地点均为天安门的样本照片分为一类。
[0112]步骤803:依据不同的检测对象对样本照片进行分类,并依据分类结果对所述检测对象进行对象属性分析,获得所述检测对象的属性特征;
[0113]这里,所述检测对象为人物对象,所述对象属性可以包括:皱纹、身材、肤色等;所述属性特征可以包括:性别、年龄、身高、体重等;
[0114]所述依据不同的检测对象对样本照片进行分类包括:对样本照片进行检测对象识别,并依据识别出的不同的检测对象对样本照片进行分类;即:对样本照片进行不同人物对象的识别,并依据识别出的不同的人物对象对样本照片进行分类;具体包括:通过人脸识别算法识别样本照片中所有人脸,并依据识别出的不同的人物对象对样本照片进行分类;
[0115]所述依据分类结果对所述检测对象进行对象属性分析,获得所述检测对象的属性特征包括:
[0116]对不同检测对象的样本照片进行对象属性识别,将识别出的对象属性与预设数据库中的对比标准参照物进行比较,获取所述检测对象的属性特征。
[0117]步骤804:依据检测对象的Μ个参考特征获取对应的Μ个对象特征序列;
[0118]本步骤包括:对所述检测对象的样本照片进行Μ个参考特征的识别,并依据识别出的Μ个参考特征获得对应所述参考特征的对象特征,并对获得的所有样本照片的Μ个参考特征对应的对象特征进行排序,获得所述Μ个参考特征对应所述检测对象的Μ个对象特征序列;
[0119]本步骤具体包括:
[0120]对样本照片进行第一参考特征的识别,并将获得的第一参考特征与预设特征数据库中的第一参考特征信息进行匹配,获得所述第一参考特征对应所述检测对象的对象特征,对获得所述检测对象的所有样本照片的对象特征按时间进行排序,获得所述检测对象的第一对象特征序列;
[0121]对样本照片进行第二参考特征的识别,并将获得的第二参考特征与预设特征数据库中的第二参考特征信息进行匹配,获得所述第二参考特征对应的所述检测对象的对象特征,对获得所述检测对象的所有样本照片的对象特征按时间进行排序,获得所述检测对象的第二对象特征序列;
[0122]以此类推,对样本照片进行第Μ参考特征的识别,并将获得的第一参考特征与预设特征数据库中的第Μ参考特征信息进行匹配,获得所述第Μ参考特征对应的所述检测对象的对象特征,对获得所述检测对象的所有对象特征按时间进行排序,获得所述检测对象的第Μ对象特征序列;其中,所述Μ为正整数;
[0123]这里所述Μ的取值可以依据实际情况进行设定,在本发明实施例中,所述Μ的取值为5 ;
[0124]所述第一参考特征为面部表情特征;所述第二参考特征为动作特征;所述第三参考特征为人际交互特征;所述第四参考特征为天气情况特征;第五参考特征为背景特定物体特征;
[0125]当所述第一参考特征为面部表情特征时,依据检测对象的参考特征获取对应的对象特征序列包括:
[0126]对某人物对象的样本照片进行面部表情识别,如:微笑、大笑、板脸等,将获得的面部表情特征与预设特征数据库中的面部表情特征信息进行匹配,获得所述面部表情特征对应的所述人物对象的情感特征,如:喜、怒、哀、乐等,对获得的所述人物对象的所有样本照片的情感特征按时间进行排序,获得所述人物对象的第一情感特征序列;
[0127]当所述第二参考特征为动作特征时,依据检测对象的参考特征获取对应的对象特征序列包括:
[0128]对某人物对象的样本照片进行动作特征识别,如:跳跃、摆V字等,将获得的动作特征与预设特征数据库中的动作特征信息进行匹配,获得所述动作特征对应的所述人物对象的情感特征,如:活泼、好动、沉静、稳重等,对获得的所述人物对象的所有样本照片的情感特征按时间进行排序,获得所述人物对象的第二情感特征序列;
[0129]当所述第三参考特征为人际交互特征时,依据检测对象的参考特征获取对应的对象特征序列包括:
[0130]对某人物对象的样本照片进行人际交互特征识别,即识别某人物对象与样本照片中其他人物对象交互关系及位置关系,如:与某人物对象拥抱或与其他人物对象间隔较远,将获得的人际交互特征与预设特征数据库中的人际交互特征信息进行匹配,获得所述人际交互特征对应的所述人物对象的情感特征,如:热情、富有亲和力、冷漠等;对获得的所述人物对象的所有样本照片的情感特征按时间进行排序,获得所述人物对象的第三情感特征序列;
[0131]当所述第四参考特征为历史天气情况特征时,依据检测对象的参考特征获取对应的对象特征序列包括:
[0132]对某人物对象的样本照片的天气情况进行识别,如晴天、阴天、雨天等,将获得的天气情况特征与预设特征数据库中的天气情况特征信息进行匹配,获得所述天气情况特征对应的所述人物对象的情感特征,如:开朗、忧郁、浪漫等,对获得的所述人物对象的所有样本照片的情感特征按时间进行排序,获得所述人物对象的第四情感特征序列;
[0133]当所述第五参考特征为背景特定物体特征时,依据检测对象的参考特征获取对应的对象特征序列包括:
[0134]对某人物对象的样本照片的背景特定物体进行识别,如背景为花草、历史人文古迹等,将获得的背景特定物体特征与预设特征数据库中的背景特定物体特征信息进行匹配,获得所述特定物体特征对应的所述人物对象的情感特征,如:爱旅游、爱历史等,对获得的所述人物对象的所有样本照片的情感特征按时间进行排序,获得所述人物对象的第五情感特征序列。
[0135]步骤805:对所述Μ个对象特征序列进行加权处理,获取所述检测对象的特征向量和综合特征向量;
[0136]本步骤具体包括:对所述Μ个对象特征序列进行加权处理,获得所述检测对象的特征曲线图,并依据所述特征曲线图获得所述检测对象的特征向量,将所述特征向量与特征数据库中综合向量模型进行匹配,获得所述检测对象的综合特征向量;其中,所述特征向量为所述检测对象在特定时间的特征向量;
[0137]所述特征向量可以为人物对象在特定时间性格取向的指数,指数范围为(1,10),如:某人物对象的在早晨8点的开朗指数为8,其整体开朗指数即综合特征向量为5。
[0138]在本实施例中,上述处理过程具体包括:对上述5个对象特征序列进行加权处理,获得所述人物对象的情感特征曲线图,并依据所述情感特征曲线图获得所述人物对象在特定时刻性格取向的指数,将所述特定时刻性格取向的指数与特征数据库中综合性格取向模型进行匹配,获得所述人物对象的综合性格取向指数。
[0139]本发明实施例中所述特征数据库为依据经验统计预设的数据库,所述数据库中各模型为依据经验统计预设的数据模型。
[0140]步骤806:依据所述属性特征、所述特征向量和综合特征向量获得所述检测对象的标识特征,并依据所述标识特征输出对应所述检测对象的多媒体信息;
[0141]这里,所述标识特征为性格特征;所述多媒体信息包括:文字、图片、音乐、影像等;
[0142]所述依据所述属性特征、所述特征向量和综合特征向量获得所述检测对象的标识特征包括:
[0143]将所述属性特征、所述特征向量和综合特征向量与特征数据库中标识特征模型进行匹配,获得所述检测对象的标识特征;具体包括:将获得的性格特征、特定时间的性格取向指数及综合性格取向指数与特征数据库中性格特征模型进行匹配,获得所述人物对象的性格特征;
[0144]所述依据所述标识特征输出对应所述检测对象的多媒体信息包括:
[0145]将所述标识特征信息与预设特征数据库中的对象交互模型进行匹配,获得所述检测对象的交互类型,并依据所述交互类型输出相应的多媒体信息;具体包括:将获得的性格特征信息与预设特征数据库中的对象交互模型进行匹配,获得所述人物对象的交互类型,并依据所述交互类型输出相应的多媒体信息;
[0146]其中,所述交互类型包括:所述检测对象在特定时间段内的人际交往取向;例如:某人物对象在晚上8点到10点间比较open,乐意与其他人交往。
[0147]步骤807:将所述样本影像文件截取为若干样本照片,并执行步骤802 ;
[0148]本步骤具体包括:通过运动影像预测算法,依据检测对象的存在情况将所述样本影像文件截取为若干样本照片。
[0149]步骤808:结束本次处理流程。
[0150]图9为本发明实施例图像处理装置组成结构示意图,如图9所示,本发明实
施例图像处理装置组成包括:获取模块91、处理模块92及输出模块93 ;其中,
[0151]所述获取模块91,用于对所述检测对象的样本照片进行对象属性分析,获得所述检测对象的属性特征;
[0152]所述处理模块92,用于依据不同的参考特征获取对应的所述检测对象的不同的对象特征序列,并对获得的对象特征序列进行加权处理,得到所述检测对象的特征向量和综合特征向量;
[0153]所述输出模块93,用于依据所述属性特征、所述特征向量和综合特征向量获得所述检测对象的标识特征,并依据所述标识特征输出对应所述检测对象的多媒体信息。
[0154]进一步的,所述装置还包括:分类模块94,用于对样本照片进行检测对象识别,并依据识别出的不同的检测对象对样本照片进行分类。
[0155]进一步的,所述装置还包括:预处理模块95,用于解析样本照片,获得所有样本照片的拍摄时间信息和拍摄地点信息,并依据拍摄时间和拍摄地点的就近原则对样本照片进行分类;
[0156]其中,所述拍摄时间和拍摄地点的就近原则包括:拍摄时间就近且拍摄地点就近的原则;
[0157]进一步的,所述预处理模块95,还用于识别样本文件是样本照片还是样本影像文件,如果是样本影像文件,将所述样本影像文件截取为若干样本照片;
[0158]其中,所述识别样本文件是样本照片还是样本影像文件包括:通过样本文件的格式识别所述样本文件是样本照片或者样本影像文件;如文件格式为.jpg/jieg为样本照片,文件格式为.mp4为样本影像文件;
[0159]所述预处理模块95将所述样本影像文件截取为若干样本照片包括:预处理模块95通过运动影像预测算法,依据检测对象的存在情况将所述样本影像文件截取为若干样本照片。
[0160]进一步的,所述处理模块92依据不同的参考特征获取对应所述检测对象的不同的对象特征序列包括:所述处理模块92对所述检测对象的样本照片进行Μ个参考特征的识另IJ,并依据识别出的Μ个参考特征获得对应所述参考特征的对象特征,并对获得的所有样本照片的Μ个参考特征对应的对象特征进行排序,获得所述Μ个参考特征对应所述检测对象的Μ个对象特征序列;具体包括:
[0161]对样本照片进行第一参考特征的识别,并将获得的第一参考特征与预设特征数据库中的第一参考特征信息进行匹配,获得所述第一参考特征对应所述检测对象的对象特征,对获得所述检测对象的所有样本照片的对象特征按时间进行排序,获得所述检测对象的第一对象特征序列;
[0162]对样本照片进行第二参考特征的识别,并将获得的第二参考特征与预设特征数据库中的第二参考特征信息进行匹配,获得所述第二参考特征对应的所述检测对象的对象特征,对获得所述检测对象的所有样本照片的对象特征按时间进行排序,获得所述检测对象的第二对象特征序列;
[0163]以此类推,对样本照片进行第Μ参考特征的识别,并将获得的第一参考特征与预设特征数据库中的第Μ参考特征信息进行匹配,获得所述第Μ参考特征对应的所述检测对象的对象特征,对获得所述检测对象的所有对象特征按时间进行排序,获得所述检测对象的第Μ对象特征序列;其中,所述Μ为正整数;
[0164]这里所述Μ的取值可以依据实际情况进行设定。
[0165]进一步的,所述输出模块93依据所述属性特征、所述特征向量和综合特征向量获得所述检测对象的标识特征包括:
[0166]将所述属性特征、所述特征向量和综合特征向量与预设特征数据库中的标识特征模型进行匹配,获得所述检测对象的标识特征。
[0167]进一步的,所述输出模块93依据所述标识特征输出对应所述检测对象的多媒体信息包括:所述输出模块93将所述标识特征信息与预设特征数据库中的对象交互模型进行匹配,获得所述检测对象的交互类型,并依据所述交互类型输出对应所述检测对象的多媒体信息。
[0168]在本发明实施例中,所述图像处理装置可位于网络中的服务器中,所述获取模块91、处理模块92、输出模块93、分类模块94及预处理模块95均可由服务器中的中央处理器(CPU, Central Processing Unit)、或数字信号处理器(DSP, Digital Signal Processor) >或现场可编程门阵列(FPGA, Field Programmable Gate Array)实现。
[0169]以上所述,仅为本发明较佳实施例而已,并非用于限定本发明的保护范围。
【主权项】
1.一种图像处理方法,其特征在于,所述方法包括: 对检测对象的样本照片进行对象属性分析,获得所述检测对象的属性特征; 依据不同的参考特征获取对应所述检测对象的不同的对象特征序列,并对获得的对象特征序列进行加权处理,得到所述检测对象的特征向量和综合特征向量; 依据所述属性特征、所述特征向量和综合特征向量获得所述检测对象的标识特征,并依据所述标识特征输出对应所述检测对象的多媒体信息。2.根据权利要求1所述方法,其特征在于,所述对检测对象的样本照片进行对象属性分析之前,所述方法还包括: 对样本照片进行检测对象识别,并依据识别出的不同的检测对象对样本照片进行分类。3.根据权利要求2所述方法,其特征在于,所述依据识别出的不同的检测对象对样本照片进行分类之前,所述方法还包括:解析样本照片,获得所有样本照片的拍摄时间信息和拍摄地点信息,并依据拍摄时间和拍摄地点的就近原则对样本照片进行分类。4.根据权利要求1或2所述方法,其特征在于,所述依据不同的参考特征获取对应所述检测对象的不同的对象特征序列包括: 对所述检测对象的样本照片进行不同参考特征的识别,依据识别出的参考特征获得对应的对象特征,对获得的所有样本照片的不同的参考特征对应的对象特征进行排序,获得不同参考特征对应所述检测对象的不同的对象特征序列。5.根据权利要求1或2所述方法,其特征在于,所述依据所述属性特征、所述特征向量和综合特征向量获得所述检测对象的标识特征包括: 将所述属性特征、所述特征向量和综合特征向量与预设特征数据库中的标识特征模型进行匹配,获得所述检测对象的标识特征。6.根据权利要求1或2所述方法,其特征在于,所述依据所述标识特征输出对应所述检测对象的多媒体信息包括: 将所述检测对象的标识特征信息与预设特征数据库中的对象交互模型进行匹配,获得所述检测对象的交互类型,并依据所述交互类型输出对应所述检测对象的多媒体信息。7.一种图像处理装置,其特征在于,所述装置包括:获取模块、处理模块及输出模块;其中, 所述获取模块,用于对所述检测对象的样本照片进行对象属性分析,获得所述检测对象的属性特征; 所述处理模块,用于依据不同的参考特征获取对应所述检测对象的不同的对象特征序列,并对获得的对象特征序列进行加权处理,得到所述检测对象的特征向量和综合特征向量; 所述输出模块,用于依据所述属性特征、所述特征向量和综合特征向量获得所述检测对象的标识特征,并依据所述标识特征输出对应所述检测对象的多媒体信息。8.根据权利要求7所述装置,其特征在于,所述装置还包括:分类模块,用于对样本照片进行检测对象识别,并依据识别出的不同的检测对象对样本照片进行分类。9.根据权利要求8所述装置,其特征在于,所述装置还包括:预处理模块,用于解析样本照片,获得所有样本照片的拍摄时间信息和拍摄地点信息,并依据拍摄时间和拍摄地点的就近原则对样本照片进行分类。10.根据权利要求7或8所述装置,其特征在于,所述处理模块,具体用于对所述检测对象的样本照片进行不同参考特征的识别,依据识别出的参考特征获得对应的对象特征,并对获得的所有样本照片的不同的参考特征对应的对象特征进行排序,获得不同参考特征对应所述检测对象的不同的对象特征序列。11.根据权利要求7或8所述装置,其特征在于,所述输出模块,具体用于将所述属性特征、所述特征向量和综合特征向量与预设特征数据库中的标识特征模型进行匹配,获得所述检测对象的标识特征。12.根据权利要求7或8所述装置,其特征在于,所述输出模块,具体用于将所述检测对象的标识特征信息与预设特征数据库中的对象交互模型进行匹配,获得所述检测对象的交互类型,并依据所述交互类型输出对应所述检测对象的多媒体信息。
【专利摘要】本发明公开了一种图像处理方法,对检测对象的样本照片进行对象属性分析,获得所述检测对象的属性特征;依据不同的参考特征获取对应所述检测对象的不同的对象特征序列,并对获得的对象特征序列进行加权处理,得到所述检测对象的特征向量和综合特征向量;依据所述属性特征、所述特征向量和综合特征向量获得所述检测对象的标识特征,并依据所述标识特征输出对应所述检测对象的多媒体信息。本发明还同时公开了一种图像处理装置。
【IPC分类】G06K9/46, G06K9/62
【公开号】CN105488516
【申请号】CN201410529494
【发明人】彭和清
【申请人】中兴通讯股份有限公司
【公开日】2016年4月13日
【申请日】2014年10月8日
【公告号】WO2016054918A1