专利名称:光源装置和投影型影像显示装置的制作方法
技术领域:
本实用新型涉及投影型影像显示装置中使用的光源装置和投影型影像显示装置。
背景技术:
在将反射型或透射型的液晶面板或者具有排列多个微小反射镜的结构的影像显示元件的显示画面,放大显示在作为投影面的屏幕或板上的投影型影像显示装置中,为了在投影面获得具有充分的大小和亮度的放大图像,对照明光学系统进行了改进。特别是开展了使用红、绿、蓝发光二极管或有机EL等固体发光元件的投影型影像显示装置的开发。例如,提出了一种即使从固体光源出射的激发光为可见光也能够高效率地进行发光的光源装置(参照日本特开2009-277516号公报)。
实用新型内容在应用日本特开2009-277516号公报的发明时,能够考虑到以下的课题。图13是作为课题假定的光源装置的主要部分结构图。图13中,从激发光源I出射的激发光2,在准直透镜3的作用下成为大致平行光,入射到二向色镜(dichroic mirror,分色镜)4。二向色镜4的特性是使激发光2的波长范围反射,使荧光8的波长范围透射。于是,激发光2在二向色镜4上反射,通过会聚透镜5之后,入射到涂敷了荧光体7的能够控制旋转的圆盘100上。会聚透镜5的曲率设定成使入射的平行光会聚在圆盘100上的I处(I个点)。被激发光2激发的圆盘100上的荧光体7,出射荧光8。荧光8通过会聚透镜5之后成为大致平行光,透过二向色镜4,入射到之后的照明光学系统。因为从荧光体7发射的荧光是全方位发光的,所以存在无法被会聚透镜5捕捉的荧光800。此外,因为还存在没有变换为荧光的未变换激发光200,所以会导致光使用效率的降低。于是,本实用新型的目的在于,在利用激发光使荧光体发光的光源装置中,提供改善了亮度效率的光源装置。为了解决上述课题,本实用新型优选的方式,例如如下所述。该光源装置具备发出激发光的光源,和被激发光入射的金属部件,金属部件在激发光入射的部位具有凹部,在该凹部中涂敷有用于由激发光激发而生成荧光的荧光体。可以在该凹部的开口部,具备具有锥形空间的透射部件,在透射部件的锥形部蒸镀二向色膜(dichroic coat),该二向色膜具有使激发光的波长范围透射、使荧光的波长范围反射的特性。此外,可以使该金属部件在激发光入射的部位具有切口部,在该切口部中涂敷用于从激发光生成荧光的荧光体,在切口部中激发光入射的一面的开口部,配置将激发光引导至荧光体的光学元件。详细而言,本实用新型的光源装置,其特征在于,包括发出激发光的光源;和被上述激发光入射的金属部件,上述金属部件,在上述激发光入射的部位具有凹部,在该凹部中涂敷有用于从上述激发光生成荧光的荧光体。[0011]此外,上述光源装置中,上述凹部呈锥形形状。此外,上述光源装置中,在上述凹部的开口部,具备具有锥形形状的空间的透射部件,在上述透射部件的锥形形状部的至少一部分蒸镀有二向色膜,该二向色膜具有使上述激发光的波长范围的至少一部分透射、使上述荧光的波长范围的至少一部分反射的特性。此外,上述光源装置中,上述荧光体涂敷在上述凹部中的至少2个面上。此外,上述光源装置中,上述荧光体涂敷在比上述凹部的深度的一半更深的区域。此外,上述光源装置中,在上述凹部的开口部,具备具有锥形形状的玻璃部件。本实用新型的投影型影像显示装置,其特征在于,包括光源装置;影像显示元件;照明光学系统,具有将来自上述光源装置的光照射到上述影像显示元件上的多个光学元件;和投影透镜,将上述影像显示元件形成的光学像放大投影,其中,上述光源装置包 括发出激发光的光源;和被上述激发光入射的金属部件,上述金属部件,在上述激发光入射的部位具有凹部,在该凹部中涂敷有用于从上述激发光生成荧光的荧光体。此外,上述光源装置中,在上述凹部的开口部,具备具有锥形形状的空间的透射部件,在上述透射部件的锥形形状部的至少一部分蒸镀有二向色膜,该二向色膜具有使上述激发光的波长范围的至少一部分透射、使上述荧光的波长范围的至少一部分反射的特性。此外,上述光源装置中,上述光源装置以固体发光元件作为激发光的光源,激发荧光体。本实用新型的光源装置,其特征在于,包括发出激发光的光源;和被上述激发光入射的金属部件,上述金属部件,在上述激发光入射的部位具有切口部,在该切口部中涂敷有用于从上述激发光生成荧光的荧光体,在上述切口部中上述激发光入射的一面的开口部,配置有将上述激发光引导至上述荧光体的第一光学元件。此外,上述光源装置中,在上述切口部中上述荧光出射的一面的开口部配置有第二光学元件,该第二光学元件具有上述荧光的出射侧比入射侧大的锥形形状。此外,上述光源装置中,在上述光源与上述金属部件切口部之间具备二向色膜,该二向色膜具有使上述激发光的波长范围透射、使上述荧光的波长范围反射的特性。此外,上述光源装置中,上述荧光体涂敷在上述切口部中的至少2个面上。此外,上述光源装置中,在上述切口部中上述荧光出射的一面的开口部具备二向色膜,该二向色膜具有使上述激发光的波长范围反射、使上述荧光的波长范围透射的特性。此外,上述光源装置中,上述第一光学元件是透射部件或者多重反射元件。此外,上述光源装置中,上述第一光学元件和上述第二光学元件是透射部件。此外,上述光源装置中,上述第一光学元件是透射部件,上述第二光学元件是多重反射元件。此外,上述光源装置中,上述第一光学元件是多重反射元件,上述第二光学元件是透射部件。此外,上述光源装置中,上述第一光学元件和上述第二光学元件是多重反射元件。本实用新型的投影型影像显示装置,其特征在于,包括光源装置;影像显示元件;照明光学系统,具有将来自上述光源装置的光照射到上述影像显示元件上的多个光学元件;和投影透镜,将上述影像显示元件形成的光学像放大投影,其中,上述光源装置包括发出激发光的光源;和被上述激发光入射的金属部件,上述金属部件,在上述激发光入射的部位具有切口部,在该切口部中涂敷有用于从上述激发光生成荧光的荧光体,在上述切口部中上述激发光入射的一面的开口部,配置有将上述激发光引导至上述荧光体的第一光学元件,在上述切口部中上述荧光出射的一面的开口部配置有第二光学元件,该第二光学元件具有上述荧光的出射侧比入射侧大的锥形形状。此外,上述光源装置中,上述光源装置以固体发光元件作为激发光的光源,激发荧光体。
图I是实施例I的光源装置的主要部分结构图。图2是表示实施例I的投影型影像显示装置的光学系统的图。图3是实施例2的光源装置的主要部分结构图。图4是表示实施例2的投影型影像显示装置的光学系统的图。图5是实施例3的光源装置的主要部分结构图。图6是表示实施例3的投影型影像显示装置的光学系统的图。图7是实施例4的光源装置的主要部分结构图。图8是表示实施例4的投影型影像显示装置的光学系统的图。图9是实施例5的光源装置的主要部分结构图。图10是表示实施例5的投影型影像显示装置的光学系统的图。图11是实施例6的光源装置的主要部分结构图。图12是表示实施例6的投影型影像显示装置的光学系统的图。图13是作为课题假定的光源装置的主要部分结构图。
具体实施方式
以下,对于实施例,参照附图进行说明。在各图中,对于相同的部分附加相同符号,对于已说明一次的省略其说明。此外,在区分各颜色的光的光路中配置的元件时,在符号之后添加表示颜色的R、G、B,在不需要区分的情况下省略颜色的后缀。[实施例I]图I是实施例I的光源装置的主要部分结构图。图I (A)表示光学系统的全貌。从激发光源I出射的激发光2,在准直透镜3的作用下成为大致平行光,入射到二向色镜4。因为二向色镜4具有之前所述的特性,激发光2在二向色镜4上反射,在通过会聚透镜5之后,入射到金属部件6。金属部件6在激发光入射的部位具有凹部,在该凹部中涂敷有用于从激发光生成荧光的荧光体7。该凹部为荧光8的出射侧开口部比入射侧开口部大的锥形形状。图13中,因为使用有机的娃树脂等作为将荧光体分散地固定的粘合剂(binder),所以为了防止因温度导致燃烧而需要使荧光体旋转,但通过使用无机的粘合剂,荧光体的旋转变得不再需要。从荧光体7发出的荧光8,在通过会聚透镜5之后成为大致平行光,通过二向色镜4,入射到之后的照明光学系统。图I (B)是将金属部件6放大的图,表示了荧光8的发散光线。从荧光体7发出的荧光8,由于在金属部件6的锥形部上反射,所以不会全方位地发散,而是在金属部件6的开口部,限制至一定角度的发散,能够由会聚透镜5捕捉所有的荧光8。此外,为了减小不在锥形部上反射,直接向金属部件6之外发散的荧光8的角度,在锥形部涂敷荧光体的区域,优选为比凹部的深度的一半更深的区域。图I (C)是将金属部件6放大的图,表示了激发光2的光线。入射到荧光体7的激发光2中没有变换为荧光的未变换激发光200,在荧光体7上反射,再次入射到涂敷在其他部分的荧光体7,被变换为荧光8。从而,优选在锥形部的至少2个面上涂敷荧光体。虽然存在即使入射到荧光体7的2个面上也没有被变换为荧光8的激发光,但是因为概率较低,所以基本没有问题。图2是表示包括图I的光源装置的投影型影像显示装置的光学系统的图。首先,说明红色光和绿色光以均匀的照度照射液晶型影像显示元件19R、19G的原理。作为激发光源1,使用蓝色激光。这是由于,激光光源的发光区域较小,所以光的会聚和准直较为容易。从激发光源I出射的蓝色激发光2,如之前所述入射到二向色镜4。二向色镜4具有使蓝色光反射,使黄色光(绿色光和红色光)透射的特性。从而,蓝色激发光2 在二向色镜4上反射,从会聚透镜5透射,会聚在涂敷了未图示的黄色荧光体的金属部件6上。通过激发黄色荧光体而产生的黄色荧光,在从金属部件6出射后,通过会聚透镜5而成为大致平行光,然后通过分光镜4,入射到偏振变换积分器。偏振变换积分器,包括由第一透镜组10和第二透镜组11组成的进行均匀照明的光学积分器,和使光的偏振方向统一在规定偏振方向上,将光变换为直线偏振光的偏振分束器阵列一偏振变换元件12。来自第二透镜组11的光在偏振变换元件12的作用下,大致统一在规定的偏振方向——例如直线偏振光的Y偏振光。然后,第一透镜组10的各透镜单元的投影像,分别在会聚透镜13、准直透镜17R、17G的作用下,在各液晶型影像显示元件19R、19G上重合。此时,通过会聚透镜13的黄色荧光,被二向色镜14分离为红色光和绿色光。因为二向色镜14具有使绿色光通过、使红色光反射的特性,所以入射到二向色镜14的黄色光之中,绿色光通过二向色镜14,在反射镜15上反射,在准直透镜17G的作用下成为大致平行光,在由入射侧偏振片18G除去X偏振光之后,入射到液晶型影像显示元件19G。另一方面,红色光在二向色镜14上反射,并在反射镜16上反射,在准直透镜17R的作用下成为大致平行光,在由入射侧偏振片18R除去X偏振光之后,入射到液晶型影像显示元件19R。接着,说明蓝色光以均匀的照度照射液晶型影像显示元件19B的原理。光源23是蓝色光源,例如是LED光源。从光源23发出的蓝色光,在通过准直透镜24、准直透镜25之后,成为大致平行光,入射到蓝色光用的偏振变换积分器。蓝色光用的偏振变换积分器,包括由第三透镜组26和第四透镜组27组成的进行均勻照明的光学积分器,和使光的偏振方向统一在规定偏振方向上,将光变换为直线偏振光的偏振分束器阵列一偏振变换元件28。来自第四透镜组27的光在偏振变换元件28的
作用下,大致统一在规定的偏振方向-例如直线偏振光的Y偏振光。然后,第三透镜组26
的各透镜单元的投影像,分别在会聚透镜29、反射镜30、准直透镜17B的作用下,在液晶型影像显示元件19B上重合。此时,由入射侧偏振片18B除去X偏振光。接着,构成光强度调制部的各液晶型影像显示元件19(19R、19G、19B),对偏振度被以Y方向为透射轴的入射侧偏振片18 (18R、18G、18B)提高了的光,按照未图示的彩色影像信号进行光强度调制,形成各颜色光的X偏振的光学像。这样形成的各颜色光的X偏振的光学像,入射到出射侧偏振片20(20R、20G、20B)。出射侧偏振片20R、20G、20B是以X方向为透射轴的偏振片。由此,除去了不需要的偏振光成分(此处为Y偏振光),提高了对比度。这样形成的各颜色光的X偏振的光学像,入射到作为颜色合成单元的颜色合成棱镜21。此时,绿色光的光学像保持X偏振(对于颜色合成棱镜21的二向色膜面来说为P偏振)入射。另一方面,在蓝色光路和红色光路中,在出射侧偏振片20B、20R与颜色合成棱镜21之间设置了未图示的1/2λ (波长)片,所以X偏振的蓝色光和红色光的光学像,在被变换为Y偏振(对于颜色合成棱镜21的进行颜色合成的二向色膜面来说为S偏振)的光学像 之后,入射到颜色合成棱镜21。其目的在于,考虑到二向色膜的分光特性,通过采用使绿色光为P偏振光,红色光和蓝色光为S偏振光的所谓SPS合成,来高效率地进行颜色合成。颜色合成棱镜21是由使蓝色光反射的二向色膜(电介质多层膜)、和使红色光反射的二向色膜(电介质多层膜)在4个直角棱镜的界面上大致形成为X字状(交叉状)而得的。入射到颜色合成棱镜21的3个入射面中相对的入射面上的蓝色光和红色光(对于二向色膜面来说为S偏振光),在交叉的蓝色光用的二向色膜和红色光用的二向色膜上分别反射。而入射到中央的入射面上的绿色光(对于二向色膜面来说为P偏振光)直线前进。这些各颜色光的光学像被颜色合成,从出射面出射彩色影像光(合成光)。然后,从颜色合成棱镜21出射的合成光,例如,由变焦透镜这样的投影透镜22,投影到透射型或者投影型的未图示的屏幕上,从而显示放大投影的影像。[实施例2]图3是实施例2的光源装置的光学系统的主要部分结构图。图3 (A)表示光学系统的全貌。与实施例I的不同点主要在于,在会聚透镜5与金属部件6之间配置棒状透镜(rod lens) 9。图3 (B)是将金属部件6和作为玻璃部件的棒状透镜9放大后的图,表不了突光8的发散光线。从荧光体7发出的荧光8,入射到棒状透镜9。棒状透镜9为荧光8的出射侧开口部比入射侧开口部大的锥形形状。于是,荧光8在入射到棒状透镜9之后,通过在锥形部的内部反复全反射,不会全方位地发散,而是被限制至棒状透镜9的出射开口部处的一定角度的发散,因此能够由会聚透镜5捕捉所有的荧光8。图3 (C)是将金属部件6和棒状透镜9放大后的图,表示了激发光2的光线。与图I (C)同样,未变换激发光200在荧光体7上反射,再次入射到涂敷在其他部分的荧光体7,被变换为荧光8。从而,优选在凹部的至少2个面上涂敷荧光体。虽然存在即使入射到荧光体7的2个面上也没有被变换为荧光8的激发光,但是因为概率较低,所以基本没有问题。图4是表示包括图2的光源装置的投影型影像显示装置的光学系统的图。从激发光源I出射的蓝色激发光2,在准直透镜3的作用下成为大致平行光,入射到二向色镜31。二向色镜31的特性是使蓝色光反射,使绿色光透射。从而,蓝色激发光在二向色镜31上反射,被会聚透镜5会聚,在通过棒状透镜9之后,入射到涂敷了未图示的绿色荧光体的金属部件6。[0072]由激发绿色荧光体而产生的绿色荧光,通过会聚透镜5后成为大致平行光,在通过二向色镜31后,通过会聚透镜32,入射到二向色镜33。二向色镜33的特性是使绿色光透射,使红色光、蓝色光反射。从而,绿色光通过二向色镜33,入射到多重反射元件40。会聚透镜32的曲率设定为使入射的大致平行光会聚到多重反射元件40的入射开口部。光源34是红色光源,例如是LED光源。从光源34出射的红色光在准直透镜35的作用下成为平行光,入射到二向色镜38。二向色镜38的特性是使红色光透射,使蓝色光反射。从而,红色光通过二向色镜38,并通过会聚透镜39,入射到二向色镜33。另一方面,光源36是蓝色光源,例如是LED光源。从光源36出射的蓝色光在准直透镜37的作用下成为平行光,入射到二向色镜38。二向色镜38的特性是使红色光透射,使蓝色光反射。从而,蓝色光在二向色镜38上反射,通过会聚透镜39,入射到二向色镜33。二向色镜33的特性是使绿色光透射,使红色光、蓝色光反射。从而,入射到二向色镜33的红色光和蓝色光,在二向色镜33上反射,入射到多重反射元件40。会聚透镜39的曲率设定为使入射的大致平行光会聚到多重反射元件40的入射开口部。入射到多重反射元件40的红色光、绿色光、蓝色光,在多重反射元件40中多次反射,在多重反射兀件40的出射开口面,成为具有均勻照度分布的光。多重反射兀件40的出射开口面的形状,是与DMD (Digital Mirror Device,数字微镜器件)元件43大致相似的形状。会聚透镜41的曲率设定为,使得形成在多重反射元件40的出射开口面上的像,在DMD元件43上放大成像。从而,从多重反射元件40的出射开口面出射的红色光、绿色光、蓝色光,通过会聚透镜41,在反射镜42上反射后,以均匀的照度分布照射到DMD元件43上。激发光源I、光源34、光源36是响应速度较快的固体发光元件,能够进行时分(time division)控制。从而,各颜色光,由DMD元件43按各颜色光中的每一种以时分的方式进行调制。在DMD元件43上反射的各颜色光,入射到投影透镜44,在未图示的屏幕上放大投影。[实施例3]图5是实施例3的光源装置的主要部分结构图。图5 (A)表示光学系统的全貌。从激发光源I出射的激发光2,在会聚透镜3的作用下,在通过透射部件9后入射到金属部件6。金属部件6在激发光入射的部位具有凹部,在该凹部中涂敷有用于从激发光生成荧光的荧光体7。该凹部是从深处向着开口部变大的锥形形状。图13中,因为使用有机的硅树脂等作为将荧光体分散地固定的粘合剂,所以为了防止因温度导致燃烧而需要使荧光体旋转,但通过使用无机的粘合剂,荧光体的旋转变得不再需要。 从荧光体7发出的荧光8,在透射部件9的锥形部反复反射,限制至一定的发散角,在通过会聚透镜5之后,成为大致平行光,入射到之后的照明光学系统。图5(B)是将金属部件6和透射部件9放大后的图,表示了荧光8的发散光线。在透射部件9内部的锥形部蒸镀有二向色膜900,该二向色膜900具有使激发光2的波长范围透射、使荧光8的波长范围反射的特性。于是,激发光2透过透射部件9的锥形部,入射到荧光体7。从荧光体7发出的荧光8,在透射部件9内部的锥形部上反射,因此不会全方位地发散,而是在透射部件9的开口部,限制为一定角度的发散。[0083]图5 (C)是将金属部件6和透射部件9放大的图,表示了激发光2的光线。入射到荧光体7的激发光2中没有变换为荧光的未变换激发光200,在荧光体7上反射,再次入射到涂敷在其他部分的荧光体7,被变换为荧光8。图5 (D)是金属部件6的正视图。此处,在凹部的5个面上涂敷有荧光体。另外,优选在凹部的5个面中的至少2个面上涂敷荧光体7。这是因为,若入射到荧光体7的2个面上,大部分激发光都会被变换为荧光。但是,如果使涂敷荧光体的面增多为3个面、4个面、5个面,则能够更加可靠地将激发光变换为荧光。图6是表示包括图5的光源装置的投影型影像显示装置的光学系统的图。首先,说明红色光和绿色光以均匀的照度照射液晶型影像显示元件19R、19G的原理。激发光源I使用蓝色激光。这是由于,激光光源的发光区域较小,所以光的会聚和准直较为容易。从激发光源I出射的蓝色激发光2,如上所述通过透射部件9之后,入射到 金属部件6的凹部中涂敷的未图示的黄色荧光体,被变换为黄色荧光。在透射部件9内部的锥形部蒸镀有二向色膜,该二向色膜具有使蓝色光反射、使黄色光(绿色光和红色光)透射的特性。从而,由激发黄色荧光体而产生的黄色荧光,在透射部件9的内部反复反射,在发散角减小之后,通过会聚透镜5而成为大致平行光,入射到偏振变换积分器。偏振变换积分器,包括由第一透镜组10和第二透镜组11组成的进行均匀照明的光学积分器,和使光的偏振方向统一在规定偏振方向上,将光变换为直线偏振光的偏振分束器阵列一偏振变换元件12。来自第二透镜组11的光,在偏振变换元件12的作用下,大致统一在规定的偏振方向——例如直线偏振光的Y偏振光。然后,第一透镜组10的各透镜单元的投影像,分别在会聚透镜13、准直透镜17R、17G的作用下,在各液晶型影像显示元件19R、19G上重合。此时,通过会聚透镜13的黄色荧光,被二向色镜14分离为红色光和绿色光。因为二向色镜14具有使绿色光透射、使红色光反射的特性,所以入射到二向色镜14的黄色光之中,绿色光通过二向色镜14,在反射镜15上反射,在准直透镜17G的作用下成为大致平行光,在由入射侧偏振片18G除去X偏振光之后,入射到液晶型影像显示元件19G。另一方面,红色光在二向色镜14上反射,并在反射镜16上反射,在准直透镜17R的作用下成为大致平行光,在由入射侧偏振片18R除去X偏振光之后,入射到液晶型影像显示元件 19R。接着,说明蓝色光以均匀的照度照射液晶型影像显示元件19B的原理。光源23是蓝色光源,例如是LED光源。从光源23发出的蓝色光,在通过准直透镜24、准直透镜25之后,成为大致平行光,入射到蓝色光用的偏振变换积分器。蓝色光用的偏振变换积分器,包括由第三透镜组26和第四透镜组27组成的进行均勻照明的光学积分器,和使光的偏振方向统一在规定偏振方向上,将光变换为直线偏振光的偏振分束器阵列一偏振变换元件28。来自第四透镜组27的光在偏振变换元件28的
作用下,大致统一在规定的偏振方向-例如直线偏振光的Y偏振光。然后,第三透镜组26
的各透镜单元的投影像,分别在会聚透镜29、反射镜30、准直透镜17B的作用下,在液晶型影像显示元件19B上重合。此时,由入射侧偏振片18B除去X偏振光。接着,构成光强度调制部的各液晶型影像显示元件19(19R、19G、19B),对偏振度被以Y方向为透射轴的入射侧偏振片18 (18R、18G、18B)提高了的光,按照未图示的彩色影像信号进行光强度调制,形成各颜色光的X偏振的光学像。这样形成的各颜色光的X偏振的光学像,入射到出射侧偏振片20(20R、20G、20B)。出射侧偏振片20R、20G、20B是以X方向为透射轴的偏振片。由此,除去了不需要的偏振光成分(此处为Y偏振光),提高了对比度。这样形成的各颜色光的X偏振的光学像,入射到作为颜色合成单元的颜色合成棱镜21。此时,绿色光的光学像保持X偏振(对于颜色合成棱镜21的二向色膜面来说为P偏振)入射。另一方面,在蓝色光路和红色光路中,在出射侧偏振片20B、20R与颜色合成棱镜21之间设置了未图示的1/2λ (波长)片,所以X偏振的蓝色光和红色光的光学像,在被变换为Y偏振(对于颜色合成棱镜21的进行颜色合成的二向色膜面来说为S偏振)的光学像之后,入射到颜色合成棱镜21。其目的在于,考虑到二向色膜的分光特性,通过采用使绿色光为P偏振光,红色光和蓝色光为S偏振光的所谓SPS合成,来高效率地进行颜色合成。颜色合成棱镜21是由使蓝色光反射的二向色膜(电介质多层膜)、和使红色光反射 的二向色膜(电介质多层膜)在4个直角棱镜的界面上大致形成为X字状(交叉状)而得的。入射到颜色合成棱镜21的3个入射面中相对的入射面上的蓝色光和红色光(对于二向色膜面来说为S偏振光),在交叉的蓝色光用的二向色膜和红色光用的二向色膜上分别反射。而入射到中央的入射面上的绿色光(对于二向色膜面来说为P偏振光)直线前进。这些各颜色光的光学像被颜色合成,从出射面出射彩色影像光(合成光)。然后,从颜色合成棱镜21出射的合成光,例如,由变焦透镜这样的投影透镜22,投影到透射型或者投影型的未图示的屏幕上,从而显示放大投影的影像。[实施例4]图7是实施例4的光源装置的主要部分结构图。图7 (A)表示光学系统的全貌。从激发光源I出射的激发光2,通过会聚透镜3,会聚到第一光学元件(在实施例4中为透射部件90)的入射开口部入射。入射到透射部件90的激发光2,在透射部件90中反复进行全反射后,入射到金属部件6。金属部件6,在激发光入射的部位具有切口部,在该切口部中涂敷有用于从激发光生成荧光的荧光体7。此外,将激发光2引导至荧光体7的透射部件90,配置在该切口部中激发光2入射的一面的开口部。进而,在该切口部中荧光8出射的一面的开口部,配置有具有荧光8的出射侧比入射侧大的锥形形状的第二光学元件(实施例4中为透射部件9)。激发光2通过在透射部件90内反复全反射,在透射部件出射面上,成为均匀的分布。于是,能够对突光体7照射分布均勻的激发光2,能够缓和激发光在一点上照射。从突光体7发出的荧光8,通过在透射部件9的内部反复全反射,不会全方位地发散,而是在透射部件9的出射开口部,限制为一定角度的发散,能够由会聚透镜5捕捉到所有的荧光8。从荧光体7发出的荧光8,在通过会聚透镜5之后,成为大致平行光,入射到之后的照明光学系统。图13中,因为使用有机的硅树脂等作为将荧光体分散地固定的粘合剂,所以为了防止因温度导致燃烧而需要使荧光体旋转,但通过使用无机的粘合剂,荧光体的旋转变得不再需要。图7(B)是将金属部件6和透射部件9、90放大后的图,表不了突光8的发散光线、激发光2的光线。[0105]在透射部件90的入射开口部,蒸镀有二向色膜900,该二向色膜900具有使激发光2的波长范围透射、使荧光8的波长范围反射的特性,而在透射部件9的入射开口部,蒸镀有二向色膜901,该二向色膜901具有使激发光2的波长范围反射、使荧光8的波长范围透射的特性。于是,激发光2中入射到透射部件9的激发光,在二向色膜901的作用下返回切口部。此外,荧光8中入射到透射部件90的荧光,在二向色膜900的作用下,返回切口部。此处,二向色膜分别蒸镀在透射部件9、90的各入射开口部,但也可以蒸镀在出射开口部。此外,还可以在透射部件之外设置蒸镀了二向色膜的透射部件,将它们配置在透射部件9、90的入射侧或者出射侧。从荧光体7发出的荧光8,通过在透射部件9的内部反复全反射,不会全方位地发散,而是在透射部件9的出射开口部,限制为一定的角度。此外,入射到荧光体7的激发光2中没有变换为荧光的未变换激发光200,在荧光体7上反射,再次入射到涂敷在其他部分 的荧光体7,被变换为荧光8。图7 (C)是金属部件6和透射部件90的立体图。在金属部件6上,设置有用于配置透射部件90的槽。图7 (D)是金属部件6的正视图。此处,在切口部的槽的前端的4个面上涂敷有荧光体。此外,优选在槽的前端的4个面中至少2个面上涂敷荧光体7。这是因为,若入射到荧光体7的2个面上,大部分激发光都会被变换为荧光。但是,如果使涂敷荧光体的面增多为3个面、4个面,则能够更加可靠地将激发光变换为荧光。图8是表示包括图7的光源装置的投影型影像显示装置的光学系统的图。首先,说明红色光和绿色光以均匀的照度照射液晶型影像显示元件19R、19G的原理。作为激发光源1,使用蓝色激光。这是由于,激光光源的发光区域较小,所以光的会聚和准直较为容易。从激发光源I出射的蓝色激发光2,如前所述,在会聚透镜3的作用下会聚,在通过透射部件90之后,入射到涂敷在金属部件6的切口部的未图示的黄色荧光体,被变换为黄色荧光。在透射部件9的入射开口部,蒸镀有二向色膜,该二向色膜具有使蓝色光反射、使黄色光(绿色光和红色光)透射的特性的。从而,由激发黄色荧光体而产生的黄色荧光,在透射部件9的内部反复全反射,发散角减小之后,通过会聚透镜5而成为大致平行光,入射到偏振变换积分器。偏振变换积分器,包括由第一透镜组10和第二透镜组11组成的进行均匀照明的光学积分器,和使光的偏振方向统一在规定偏振方向上,将光变换为直线偏振光的偏振分束器阵列一偏振变换元件12。来自第二透镜组11的光在偏振变换元件12的作用下,大致统一在规定的偏振方向——例如直线偏振光的Y偏振光。然后,第一透镜组10的各透镜单元的投影像,分别在会聚透镜13、准直透镜17R、17G的作用下,在各液晶型影像显示元件19R、19G上重合。此时,通过会聚透镜13的黄色荧光,被二向色镜14分离为红色光和绿色光。因为二向色镜14具有使绿色光透射、使红色光反射的特性,所以入射到二向色镜14的黄色光之中,绿色光通过二向色镜14,在反射镜15上反射,在准直透镜17G的作用下成为大致平行光,在由入射侧偏振片18G除去X偏振光之后,入射到液晶型影像显示元件19G。另一方面,红色光在二向色镜14上反射,并在反射镜16上反射,在准直透镜17R的作用下成为大致平行光,在由入射侧偏振片18R除去X偏振光之后,入射到液晶型影像显示元件 19R。接着,说明蓝色光以均匀的照度照射液晶型影像显示元件19B的原理。光源23是蓝色光源,例如是LED光源。从光源23发出的蓝色光,在通过准直透镜24、准直透镜25之后,成为大致平行光,入射到蓝色光用的偏振变换积分器。蓝色光用的偏振变换积分器,包括由第三透镜组26和第四透镜组27组成的进行均勻照明的光学积分器,和使光的偏振方向统一在规定偏振方向上,将光变换为直线偏振光的偏振分束器阵列一偏振变换元件28。来自第四透镜组27的光在偏振变换元件28的
作用下,大致统一在规定的偏振方向-例如直线偏振光的Y偏振光。然后,第三透镜组26
的各透镜单元的投影像,分别在会聚透镜29、反射镜30、准直透镜17B的作用下,在液晶型 影像显示元件19B上重合。此时,由入射侧偏振片18B除去X偏振光。接着,构成光强度调制部的各液晶型影像显示元件19(19R、19G、19B),对偏振度被以Y方向为透射轴的入射侧偏振片18 (18R、18G、18B)提高了的光,按照未图示的彩色影像信号进行光强度调制,形成各颜色光的X偏振的光学像。这样形成的各颜色光的X偏振的光学像,入射到出射侧偏振片20(20R、20G、20B)。出射侧偏振片20R、20G、20B是以X方向为透射轴的偏振片。由此,除去了不需要的偏振光成分(此处为Y偏振光),提高了对比度。这样形成的各颜色光的X偏振的光学像,入射到作为颜色合成单元的颜色合成棱镜21。此时,绿色光的光学像保持X偏振(对于颜色合成棱镜21的二向色膜面来说为P偏振)入射。另一方面,在蓝色光路和红色光路中,在出射侧偏振片20B、20R与颜色合成棱镜21之间设置了未图示的1/2 λ (波长)片,所以X偏振的蓝色光和红色光的光学像,在被变换为Y偏振(对于颜色合成棱镜21的进行颜色合成的二向色膜面来说为S偏振)的光学像之后,入射到颜色合成棱镜21。其目的在于,考虑到二向色膜的分光特性,通过采用使绿色光为P偏振光,红色光和蓝色光为S偏振光的所谓SPS合成,来高效率地进行颜色合成。颜色合成棱镜21是由使蓝色光反射的二向色膜(电介质多层膜)、和使红色光反射的二向色膜(电介质多层膜)在4个直角棱镜的界面上大致形成为X字状(交叉状)而得的。入射到颜色合成棱镜21的3个入射面中相对的入射面上的蓝色光和红色光(对于二向色膜面来说为S偏振光),在交叉的蓝色光用的二向色膜和红色光用的二向色膜上分别反射。而入射到中央的入射面上的绿色光(对于二向色膜面来说为P偏振光)直线前进。这些各颜色光的光学像被颜色合成,从出射面出射彩色影像光(合成光)。然后,从颜色合成棱镜21出射的合成光,例如,由变焦透镜这样的投影透镜22,投影到透射型或者投影型的未图示的屏幕上,从而显示放大投影的影像。[实施例5]图9是实施例5的光源装置的光学系统的主要部分结构图。图9 (A)表不光学系统的全貌。与实施例4的不同主要在于,将第一光学兀件和第二光学元件,分别替换为多重反射元件92和93。从激发光源I出射的激发光2,通过会聚透镜3,会聚到多重反射元件92的入射开口部入射。入射到多重反射元件92的激发光2,在多重反射元件92的内部反复反射后,入射到金属部件6。金属部件6在激发光入射的部位具有切口部,在该切口部中涂敷有用于从激发光生成荧光的荧光体7。并且,将激发光2引导至荧光体7的多重反射元件,配置在切口部中激发光2入射的一面的开口部。进而,在该切口部的荧光8出射的一面的开口部配置有多重反射元件93,其具有荧光8的出射侧比入射侧大的锥形形状。激发光2通过在多重反射元件92内反复反射,在多重反射元件出射面上,成为均匀的分布。于是,能够对荧光体7照射均匀的分布的激发光2,能够缓和激发光在一点上照射。从荧光体7发出的荧光8,通过在多重反射元件93的内部反复反射,不会全方位地发散,而是在多重反射元件93的出射开口部,限制至一定角度的发散,能够由会聚透镜5捕捉所有的荧光8。从荧光体7发出的荧光8,在通过会聚透镜5之后,成为大致平行光,入射到之后的照明光学系统。图9 (B)是将金属部件6和多重反射兀件92、93放大后的图,表不了突光8的发 散光线、激发光2的光线。在多重反射元件92的出射开口部,配置有二向色滤光片902,其蒸镀了具有使激发光2的波长范围透射、使荧光8的波长范围反射的特性的二向色膜,在多重反射元件93的出射开口部,配置有二向色滤光片903,其蒸镀了具有使激发光2的波长范围反射、使荧光8的波长范围透射的特性的二向色膜。多重反射元件是在内表面蒸镀了反射膜的中空的元件,因为在开口面不能镀膜,所以另外使用二向色滤光片。激发光2中入射到多重反射元件93的激发光,在二向色滤光片903的作用下返回金属切口部。此外,荧光8中入射到多重反射元件92的荧光,在二向色滤光片902的作用下返回金属切口部。此处,将二向色滤光片902、903分别配置在多重反射元件的各出射开口部,但也可以配置在入射开口部。此外,实施例4中没有提及二向色滤光片902,但也能够与实施例5同样地,在实施例4中应用二向色滤光片902。从荧光体7发出的荧光8,通过在多重反射元件93的内部反复反射,不会全方位地发散,而是在多重反射元件93的出射开口部,限制至一定角度的发散。与图7 (C)同样地,未变换激发光200,在荧光体7上反射,再次入射到涂敷在其他部分荧光体7,被变换为荧光8。图9 (C)是金属部件6和多重反射元件92的立体图。在金属部件6,设置有用于配置多重反射元件92的槽。图9 (D)是金属部件6的正视图。此处的说明与图7 (D)相同,因此省略说明。图10是表示包括图9的光源装置的投影型影像显示装置的光学系统的图。作为激发光源1,使用蓝色激光。这是由于,激光光源的发光区域较小,所以光的会聚和准直较为容易。从激发光源I出射的蓝色激发光2,如前所述,被会聚透镜3会聚,在通过多重反射元件92之后,入射到涂敷在金属部件6的切口部的未图示的绿色荧光体,被变换为绿色荧光。由激发绿色荧光体而产生的绿色荧光,如上所述在多重反射元件93中反复反射,在发散角减小后,通过会聚透镜5而成为大致平行光,通过会聚透镜32,入射到二向色镜33。二向色镜33的特性是使绿色光透射,使红色光、蓝色光反射。从而,绿色光通过二向色镜33,入射到多重反射元件40。会聚透镜32的曲率设定为使入射的大致平行光会聚到多重反射元件40的入射开口部。光源34是红色光源,例如是LED光源。从光源34出射的红色光在准直透镜35的作用下成为平行光,入射到二向色镜38。二向色镜38的特性是使红色光透射,使蓝色光反射。从而,红色光通过二向色镜38,并通过会聚透镜39,入射到二向色镜33。另一方面,光源36是蓝色光源,例如是LED光源。从光源36出射的蓝色光在准直透镜37的作用下成为平行光,入射到二向色镜38。二向色镜38的特性是使红色光透射,使蓝色光反射。从而,蓝色光在二向色镜38上反射,通过会聚透镜39,入射到二向色镜33。二向色镜33的特性是使绿色光透射,使红色光、蓝色光反射。从而,入射到二向色镜33的红色光和蓝色光,在二向色镜33上反射,入射到多重反射元件40。会聚透镜39的曲率设定为使入射的大致平行光会聚到多重反射元件40的入射开口部。入射到多重反射元件40的红色光、绿色光、蓝色光,在多重反射元件 40中多次反射,在多重反射兀件40的出射开口面,成为具有均勻照度分布的光。多重反射兀件40的出射开口面的形状,是与DMD(Digital Mirror Device,数字微镜器件)元件43大致相似的形状。会聚透镜41的曲率设定为,使得形成在多重反射元件40的出射开口面上的像,在DMD元件43上放大成像。从而,从多重反射元件40的出射开口面出射的红色光、绿色光、蓝色光,通过会聚透镜41,在反射镜42上反射后,以均匀的照度分布照射到DMD元件43上。激发光源I、光源34、光源36是响应速度较快的固体发光元件,能够进行时分(time division)控制。从而,各颜色光,由DMD元件43按各颜色光中的每一种以时分的方式进行调制。在DMD元件43上反射的各颜色光,入射到投影透镜44,在未图示的屏幕上放大投影。[实施例6]图11是实施例6的光源装置的主要部分结构图。与实施例4的不同主要在于,在透射部件9没有蒸镀二向色膜,并且在金属部件6的切口部,存在没有涂敷荧光体7的面70。图11 (A)表示光学系统的全貌。从激发光源I出射的激发光2,通过会聚透镜3,会聚到透射部件90的入射开口部入射。入射到透射部件90的激发光2,在透射部件90中反复全反射后,入射到金属部件6。金属部件6,在激发光入射的部位具有切口部,在该切口部中涂敷有用于从激发光生成荧光的荧光体7。从荧光体7发出的荧光8,在通过会聚透镜5后,成为大致平行光,入射到之后的照明光学系统。此外,在金属部件6的切口部,存在没有涂敷荧光体7的面。于是,没有被变换为荧光的未变换激发光200,入射到透射部件9,在通过会聚透镜5后,成为大致平行光,与荧光7同样地入射到之后的照明光学系统。图11 (B)是将金属部件6和透射部件9、90放大后的图,表不了突光8的发散光线、激发光2的光线。在透射部件90的入射开口部,蒸镀有二向色膜900,其具有使激发光2的波长范围透射,使荧光8的波长范围反射的特性。于是,激发光2透过透射部件90,入射到荧光体7,从荧光体7发出的荧光8,通过在透射部件9的内部反复全反射,不会全方位地发散,在透射部件9的开口部,限制至一定角度的发散。此处,二向色膜蒸镀在透射部件90的入射开口部,但也可以蒸镀在出射开口部。此外,还可以在透射部件之外设置蒸镀了二向色膜的透射部件,配置在透射部件90的入射侧或者出射侧。在金属部件6的切口部,存在没有涂敷荧光体7的面70。于是,在荧光体未涂敷面70反射而入射到透射部件9的未变换激发光200,以及直接入射到透射部件9的未变换激发光200,通过在透射部件9的内部反复全反射,不会全方位地发散,而是在透射部件9的开口部,限制至一定角度的发散。因为在透射部件9没有蒸镀二向色膜,所以未变换激发光200不会返回金属部件6。图11 (C)是金属部件6和透射部件90的立体图,图11 (D)是金属部件6的正视图。在金属部件6,设置有用于配置透射部件90的槽。如前所述,在槽的前端的4个面中的至少I个面,存在没有涂敷荧光体7的面70。图12是表示包括图11的光源装置的投影型影像显示装置的光学系统的图。在区分各颜色的光的光路中配置的元件时在符号之后添加表示颜色的R、G、B,在不需要区分的情况下省略颜色的后缀。
红色光和绿色光以均匀的照度照射液晶型影像显示元件19R、19G的原理与实施例4相同,因此省略。首先,说明蓝色光以均匀的照度照射液晶型影像显示元件19B的原理。作为蓝色光源,与激发光源I同样地使用蓝色激光。这是由于,激光光源的发光区域较小,所以光的会聚和准直较为容易。从激发光源I出射的蓝色激发光2,如前所述通过透射部件90之后,入射到涂敷在金属部件6的切口部的未图示的黄色荧光体,一部分被变换为黄色荧光,一部分作为未变换蓝色激发光,入射到透射部件9。黄色荧光和未变换蓝色激发光,在透射部件9的内部反复全反射,在发散角减小后,通过会聚透镜5而成为大致平行光,入射到偏振变换积分器。偏振变换积分器,包括由第一透镜组10和第二透镜组11组成的进行均匀照明的光学积分器,和使光的偏振方向统一在规定偏振方向上,将光变换为直线偏振光的偏振分束器阵列一偏振变换元件12。来自第二透镜组11的光在偏振变换元件12的作用下,大致统一在规定的偏振方向—例如直线偏振光的Y偏振光。入射到偏振变换积分器的黄色荧光和未变换蓝色激发光中未变换蓝色激发光的第一透镜组10的各透镜单元的投影像,分别在通过会聚透镜13、二向色镜14、二向色镜15之后,在会聚透镜50的附近重合。在会聚透镜50的附近重合的具有均匀的照度分布的光束,在通过反射镜51、会聚透镜52、反射镜30、会聚透镜17B之后,再次在液晶型影像显示元件19B上作为具有均匀的照度分布的光束投影。此时,由入射侧偏振片18B除去X偏振光。液晶型影像显示元件19R、19G、19B之后的原理,与实施例4相同,因此省略。此处,使二向色镜14的特性为红色光反射,绿色光、蓝色光透射,使二向色镜15的特性为绿色光反射、蓝色光透射;但也可以使二向色镜14的特性为蓝色光反射,绿色光、红色光透射,使二向色镜15的特性为绿色光反射、红色光透射。此外,在实施例4和6中,作为(I)将激发光2引导至荧光体7的元件,和(2)在荧光8出射的一面的开口部设置的具有锥形的元件,均使用了透射部件;而在实施例5中,则均使用了多重反射元件,不过,作为组合可以考虑如下几种。即,(I)透射部件(2)透射部件(实施例4和6),(I)透射部件(2)多重反射元件,(I)多重反射元件(2)透射部件,(I)多重反射元件(2)多重反射元件(实施例5)这4种。此外,因为荧光体中也有耐水性较弱的,所以可以在荧光体的上表面蒸镀疏水膜。另外,为了减小激发光在荧光体上的反射,若使P偏振的激发光入射到荧光体上,有望实现
效率改善。[0158]实施例I 6中,说明了影像显示元件为液晶型影像显示元件或者DMD元件中的某一种的情况,当然,在任一实施例中,使用哪一个元件,都能够实现本实用新型。此外,存在激发光源I为I个的实施例,但也可以配置多个。根据本实用新型,在利用激发光使荧光体发光的光源装置中,能够提供改善了亮度效率的光源装置。
权利要求1.一种光源装置,其特征在于,包括 发出激发光的光源;和 被所述激发光入射的 金属部件, 所述金属部件,在所述激发光入射的部位具有凹部,在该凹部中涂敷有用于从所述激发光生成荧光的荧光体。
2.如权利要求I所述的光源装置,其特征在于 所述凹部呈锥形形状。
3.如权利要求I所述的光源装置,其特征在于 在所述凹部的开口部,具备具有锥形形状的空间的透射部件,在所述透射部件的锥形形状部的至少一部分蒸镀有二向色膜,该二向色膜具有使所述激发光的波长范围的至少一部分透射、使所述荧光的波长范围的至少一部分反射的特性。
4.如权利要求I 3中任一项所述的光源装置,其特征在于 所述荧光体涂敷在所述凹部中的至少2个面上。
5.如权利要求4所述的光源装置,其特征在于 所述荧光体涂敷在比所述凹部的深度的一半更深的区域。
6.如权利要求I所述的光源装置,其特征在于 在所述凹部的开口部,具备具有锥形形状的玻璃部件。
7.一种投影型影像显示装置,其特征在于,包括 光源装置; 影像显示元件; 照明光学系统,具有将来自所述光源装置的光照射到所述影像显示元件上的多个光学元件;和 投影透镜,将所述影像显示元件形成的光学像放大投影,其中, 所述光源装置包括 发出激发光的光源;和 被所述激发光入射的金属部件, 所述金属部件,在所述激发光入射的部位具有凹部,在该凹部中涂敷有用于从所述激发光生成荧光的荧光体。
8.如权利要求7所述的投影型影像显示装置,其特征在于 在所述凹部的开口部,具备具有锥形形状的空间的透射部件,在所述透射部件的锥形形状部的至少一部分蒸镀有二向色膜,该二向色膜具有使所述激发光的波长范围的至少一部分透射、使所述荧光的波长范围的至少一部分反射的特性。
9.如权利要求7或者8所述的投影型影像显示装置,其特征在于 所述光源装置以固体发光元件作为激发光的光源,激发荧光体。
10.一种光源装置,其特征在于,包括 发出激发光的光源;和 被所述激发光入射的金属部件, 所述金属部件,在所述激发光入射的部位具有切口部,在该切口部中涂敷有用于从所述激发光生成荧光的荧光体,在所述切口部中所述激发光入射的一面的开口部,配置有将所述激发光引导至所述荧光体的第一光学元件。
11.如权利要求10所述的光源装置,其特征在于 在所述切口部中所述荧光出射的一面的开口部配置有第二光学元件,该第二光学元件具有所述荧光的出射侧比入射侧大的锥形形状。
12.如权利要求10或者11所述的光源装置,其特征在于 在所述光源与所述金属部件切口部之间具备二向色膜,该二向色膜具有使所述激发光的波长范围透射、使所述荧光的波长范围反射的特性。
13.如权利要求10或11所述的光源装置,其特征在于 所述荧光体涂敷在所述切口部中的至少2个面上。
14.如权利要求10或11所述的光源装置,其特征在于 在所述切口部中所述荧光出射的一面的开口部具备二向色膜,该二向色膜具有使所述激发光的波长范围反射、使所述荧光的波长范围透射的特性。
15.如权利要求10所述的光源装置,其特征在于 所述第一光学元件是透射部件或者多重反射元件。
16.如权利要求11所述的光源装置,其特征在于 所述第一光学元件和所述第二光学元件是透射部件。
17.如权利要求11所述的光源装置,其特征在于 所述第一光学元件是透射部件,所述第二光学元件是多重反射元件。
18.如权利要求11所述的光源装置,其特征在于 所述第一光学元件是多重反射元件,所述第二光学元件是透射部件。
19.如权利要求11所述的光源装置,其特征在于 所述第一光学元件和所述第二光学元件是多重反射元件。
20.一种投影型影像显示装置,其特征在于,包括 光源装置; 影像显示元件; 照明光学系统,具有将来自所述光源装置的光照射到所述影像显示元件上的多个光学元件;和 投影透镜,将所述影像显示元件形成的光学像放大投影,其中, 所述光源装置包括 发出激发光的光源;和 被所述激发光入射的金属部件, 所述金属部件,在所述激发光入射的部位具有切口部,在该切口部中涂敷有用于从所述激发光生成荧光的荧光体, 在所述切口部中所述激发光入射的一面的开口部,配置有将所述激发光引导至所述荧光体的第一光学兀件, 在所述切口部中所述荧光出射的一面的开口部配置有第二光学元件,该第二光学元件具有所述荧光的出射侧比入射侧大的锥形形状。
21.如权利要求20所述的投影型影像显示装置,其特征在于所述光 源装置以固体发光元件作为激发光的光源,激发荧光体。
专利摘要本实用新型提供光源装置和投影型影像显示装置。在利用激发光使荧光体发光的光源装置中,提供改善了亮度效率的光源装置。该光源装置具备发出激发光的光源,和被激发光入射的金属部件,金属部件在激发光入射的部位具有凹部,在该凹部中涂敷有用于从激发光生成荧光的荧光体。凹部可以为锥形形状。荧光体可以涂敷在凹部的至少2个面上。荧光体可以涂敷在凹部的深度的一半以下的区域。在凹部的开口部,可以具备具有锥形形状的玻璃部件。
文档编号H04N9/31GK202600345SQ20112050037
公开日2012年12月12日 申请日期2011年12月5日 优先权日2010年12月17日
发明者木村展之, 平田浩二, 池田英博 申请人:日立民用电子株式会社