一种提供零温度系数电压的方法及电路的制作方法

xiaoxiao2020-7-23  13

一种提供零温度系数电压的方法及电路的制作方法
【专利摘要】本发明公开了一种提供零温度系数电压的方法和电路,电路包括:第一双极型晶体管的集电极和基极接地,发射极连接第四电阻的一端和运算放大器的反相输入端;第二双极型晶体管的集电极和基极接地,发射极连接第一电阻的一端,第一电阻的另一端连接第五电阻的一端和运算放大器的正相输入端;第三双极性晶体管的集电极和基极接地,发射极连接第二电阻的一端;两个晶体管的栅极均连接运算放大器的输出端;源极均连接电源;第一晶体管的漏极连接第四电阻的另一端、第五电阻的另一端;第二晶体管的漏极连接第二电阻的另一端和第三电阻的一端,第三电阻的另一端接地。本发明中,减少了负温度系数电流,降低了电路功耗。
【专利说明】一种提供零温度系数电压的方法及电路
【技术领域】
[0001]本发明涉及集成电路设计领域,尤其涉及一种提供零温度系数电压的方法及电路。
【背景技术】
[0002]带隙基准参考源电路广泛地应用于模拟电路中,带隙基准参考源电路可以提供一个与工艺、电压和温度无关的电压,该电压可用于温度检测电路、数据转换器、低压差线性稳压器等电路中。
[0003]在深亚微米工艺下,电源电压往往只有IV左右,小于带隙电压1.2V,因此采用传统结构的带隙基准参考电路无法实现在低电源电压下工作。
[0004]在目前的技术实现中,通过采用正负温度系数电流加权技术,得到一个低温度系数电流,并将该电流送给一个低温度系数的电阻,得到一个低于IV的带隙参考电压。
[0005]然而,现有技术存在以下缺点:采用正负温度系数的电流加权,需要两个电流,功耗比较大;电路中产生正、负温度系数电流的电阻的个数多,并要求很好的匹配,因此实现难度大、要求高。

【发明内容】

[0006]为了解决现有技术中存在的上述缺陷,本发明提出一种提供零温度系数电压的方法及电路,能够简便地提供工作于IV以下的零温度系数电压。
[0007]本发明的一个方面,提供一种带隙基准参考源电路,包括第一双极型晶体管、第二双极型晶体管、第三双极型晶体管、第一晶体管、第二晶体管、运算放大器、第一电阻、第二电阻、第三电阻、第四电阻、第五电阻;其中:
[0008]所述第一双极型晶体管的集电极和基极接地,发射极连接所述第四电阻的一端和所述运算放大器的反相输入端;
[0009]所述第二双极型晶体管的集电极和基极接地,发射极连接所述第一电阻的一端,所述第一电阻的另一端连接所述第五电阻的一端和所述运算放大器的正相输入端;
[0010]所述第三双极性晶体管的集电极和基极接地,发射极连接所述第二电阻的一端;
[0011]所述第一晶体管的栅极和所述第二晶体管的栅极连接所述运算放大器的输出端;所述第一晶体管的源极和所述第二晶体管的源极连接电源;所述第一晶体管的漏极连接所述第四电阻的另一端、所述第五电阻的另一端;所述第二晶体管的漏极连接所述第二电阻的另一端和第三电阻的一端,所述第三电阻的另一端接地。
[0012]作为上述技术方案的优选,所述第四电阻与第五电阻的阻值相等。
[0013]作为上述技术方案的优选,所述第三电阻由第六电阻和第七电阻串联替代。
[0014]作为上述技术方案的优选,所述第一晶体管、第二晶体管、第三晶体管为MOS场效应管或双极性晶体管。
[0015]作为上述技术方案的优选,所述第一晶体管与第二晶体管尺寸相等。[0016]本发明的另一方面,提供一种零温度系数电压的方法,包括提供上述带隙基准参考源电路,还包括以下步骤:
[0017]设置误差放大器的正相输入端和反相输入端具有相等的电压;
[0018]调节第一电阻、第二电阻和第三电阻,使第二电阻上的正温度系数的电压与第三双极型晶体管的负温度系数的电压相加,得到零温度系数的第一电压;
[0019]调节第四电阻、第五电阻,使所述第一电压降低到小于IV,同时使得第一晶体管、第二晶体管的漏极端的电压相等。
[0020]作为上述技术方案的优选,当所述第三电阻由第六电阻和第七电阻串联替代时,所述方法还包括:
[0021]调节所述第六电阻、第七电阻的相对大小,得到范围在OV和第一电压之间的零温度系数的第二电压。
[0022]本发明中,第一晶体管和第二晶体管中减少了负温度系数电流,降低了电路功耗;需要匹配的电阻为第一电阻、第二电阻、第三电阻,与传统的IV低压带隙基准参考源相比,减少一个电阻匹配要求,可得到更好匹配特性;各支路的电流均为PTAT电流,降低了电路的工作电流。
[0023]本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
[0024]下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
【专利附图】

【附图说明】
[0025]附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
[0026]图1是本发明实施例提出的带隙基准参考源电路的结构图;
[0027]图2是本发明实施例提出的另一种带隙基准参考源电路的结构图;
[0028]图3是本发明实施例中提供零温度系数电压的方法的流程图。
【具体实施方式】
[0029]以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
[0030]如图1所示为本发明实施例提出的带隙基准参考源电路,包括:
[0031]第一双极型晶体管Q1、第二双极型晶体管Q2、第三双极型晶体管Q3、第一晶体管Ml、第二晶体管M2、运算放大器A、第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5 ;其中,
[0032]第一双极型晶体管Ql的集电极和基极接地,发射极连接第四电阻R4的一端和运算放大器A的反相输入端VN;
[0033]第二双极型晶体管Q2的集电极和基极接地,发射极连接第一电阻Rl的一端,第一电阻Rl的另一端连接第五电阻R5的一端和运算放大器A的正相输入端VP ;
[0034]第三双极性晶体管Q3的集电极和基极接地,发射极连接第二电阻R2的一端;[0035]第一晶体管Ml的栅极和第二晶体管M2的栅极连接运算放大器A的输出端;第一晶体管Ml的源极和第二晶体管M2的源极连接电源VDD ;第一晶体管Ml的漏极连接第四电阻R4的另一端、第五电阻R5的另一端;第二晶体管M2的漏极接第二电阻R2的另一端和第三电阻R3的一端,第三电阻R3的另一端接地。
[0036]以下,详细说明本发明实施例提出的带隙基准参考源电路的原理:
[0037]首先做出如下假设:
[0038]1、误差放大器A的增益足够大,并且输入阻抗无穷大,使得VP、VN点的电压相等;
[0039]2、忽略电路中的失配,如电阻间的失配、晶体管间的失配,双极型晶体管间的失配。
[0040]双极型晶体管的集电极电流与其发射极-基极电压之间的关系为:
[0041]Ic=Is- Jmih(I)
[0042]其中,Is为双极型晶体管的饱和电流,Vt为热电压,VT=KT/q ;K为波尔兹曼常数,T为绝对温度,q为电子电荷,Veb为双极型晶体管的发射极-基极电压。
[0043]双极型晶体管中的电流为:
[0044]
【权利要求】
1.一种带隙基准参考源电路,其特征在于,包括第一双极型晶体管、第二双极型晶体管、第三双极型晶体管、第一晶体管、第二晶体管、运算放大器、第一电阻、第二电阻、第三电阻、第四电阻、第五电阻;其中: 所述第一双极型晶体管的集电极和基极接地,发射极连接所述第四电阻的一端和所述运算放大器的反相输入端; 所述第二双极型晶体管的集电极和基极接地,发射极连接所述第一电阻的一端,所述第一电阻的另一端连接所述第五电阻的一端和所述运算放大器的正相输入端; 所述第三双极性晶体管的集电极和基极接地,发射极连接所述第二电阻的一端; 所述第一晶体管的栅极和所述第二晶体管的栅极连接所述运算放大器的输出端;所述第一晶体管的源极和所述第二晶体管的源极连接电源;所述第一晶体管的漏极连接所述第四电阻的另一端、所述第五电阻的另一端;所述第二晶体管的漏极连接所述第二电阻的另一端和第三电阻的一端,所述第三电阻的另一端接地。
2.根据权利要求1所述的电路,其特征在于,所述第四电阻与第五电阻的阻值相等。
3.根据权利要求1或2所述的电路,其特征在于,所述第三电阻由第六电阻和第七电阻串联替代。
4.根据权利要求1或2所述的电路,其特征在于,所述第一晶体管、第二晶体管、第三晶体管为MOS场效应管或双极性晶体管。
5.根据权利要求3所述的电路,其特征在于,所述第一晶体管、第二晶体管、第三晶体管为MOS场效应管或双极性晶体管。
6.根据权利要求1或2所示的电路,其特征在于,所述第一晶体管Ml与第二晶体管M2尺寸相等。
7.根据权利要求3所示的电路,其特征在于,所述第一晶体管与第二晶体管尺寸相等。
8.根据权利要求4所示的电路,其特征在于,所述第一晶体管与第二晶体管尺寸相等。
9.一种提供零温度系数电压的方法,其特征在于,包括提供如权利要求1所述的带隙基准参考源电路,还包括以下步骤: 设置误差放大器的正相输入端和反相输入端具有相等的电压; 调节第一电阻、第二电阻和第三电阻,使第二电阻上的正温度系数的电压与第三双极型晶体管的负温度系数的电压相加,得到零温度系数的第一电压; 调节第四电阻、第五电阻,使所述第一电压降低到小于IV,同时使得第一晶体管、第二晶体管的漏极端的电压相等。
10.根据权利要求9所述的方法,其特征在于,当所述第三电阻由第六电阻和第七电阻串联替代时,所述方法还包括: 调节所述第六电阻、第七电阻的相对大小,得到范围在OV和第一电压之间的零温度系数的第二电压。
【文档编号】G05F1/567GK103677056SQ201310246410
【公开日】2014年3月26日 申请日期:2013年6月20日 优先权日:2013年6月20日
【发明者】李振国, 原义栋, 杨小坤 申请人:国家电网公司, 北京南瑞智芯微电子科技有限公司

最新回复(0)